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Label-free methods for MS/MS quantification of protein expression are becoming more

prevalent as instrument sensitivity increases. Spectral counts (SCs) are commonly used,

readily obtained, and increase linearly with protein abundance; however, a statistical frame-

work has been lacking. To accommodate the highly non-normal distribution of SCs, we

developed ReSASC (resampling-based significance analysis for spectral counts), which eval-

uates differential expression between two conditions by pooling similarly expressed proteins

and sampling from this pool to create permutation-based synthetic sets of SCs for each

protein. At a set confidence level and corresponding p-value cutoff, ReSASC defines a new

p-value, p0, as the number of synthetic SC sets with p4pcutoff divided by the total number of

sets. We have applied ReSASC to two published SC data sets and found that ReSASC

compares favorably with existing methods while being easy to operate and requiring only

standard computing resources.
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1 Introduction

LC coupled to MS/MS is the leading method used to

determine the protein composition of complex biological

samples [1]. Increasingly, this technology has been

employed for biomarker discovery research, wherein the

protein composition of cell or bodily fluid samples from a

group of patients with a given disease or condition of

interest (henceforth termed ‘‘cases’’) is compared to that

from matched healthy ‘‘controls’’ [2–4]. The goal of this type

of experiment is to effectively detect and quantify differences

between samples. While a single MS experiment is capable

of identifying thousands of proteins – perhaps dozens or

hundreds of which may be up- or down-regulated between

the two groups – the lists of possible candidates must be

further tested by alternate methods to confirm statistically

significant differences [5]. Currently stable-isotope labeling

(ICAT [6] and iTRAQ [7]) is widely used to measure relative

protein abundance [8]; however, there are several difficulties

associated with its use, including increased costs and time

required for sample processing, as well as reduced sensi-

tivity of protein and peptide detection [9].

In response to these difficulties, label-free methods have

been developed to quantify differential expression in MS

experiments. Two of the most relevant label-free methods

are the comparison of peptide ion peak current area and

spectral counting, both of which have been shown to

correlate well with protein abundance [10, 11]. Spectral

counts (SCs) – the total number of MS/MS spectra matched

to a given protein – have the advantage that they are theo-

retically and computationally simple, and that they are

provided directly by database searching algorithms such as
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SEQUEST ([12]; Thermo Electron, Waltham, MA, USA) or

MASCOT [13]. On the other hand, their very nature makes

statistical analysis difficult: SCs are discrete, and their

underlying distribution is not normal – in fact, it is highly

skewed due to the overwhelming number of zero

entries (e.g. when a protein is not found in a given MS

experiment or in a given condition). Consequently, standard

parametric tests such as Student’s t-test are inappropriate

for this type of data, especially when the number of runs is

small [14].

Many experiments that employ SCs as a means for

relative quantification rely on simple fold cut-off criteria,

either with or without some sort of normalization procedure

[15, 16]. Although unsuitable for the distribution of SCs,

some publications have used t-tests or other parametric

statistical tests [17]. Some groups join SCs with other label-

free metrics such as the number of unique peptides detected

per protein or the SEQUEST-based XCorr parameter [18].

With the recent increased interest in novel statistical

measures geared specifically toward SC data, several new

approaches have been developed [19–21]. Choi et al.
introduced a test based on Bayes estimation of generalized

linear mixed effects models, known as QSpec [22],

while Fu et al. have proposed a new metric, termed the

spectral index (SpI) that combines a protein’s SC with the

number of runs in which the given protein was detected

[23].

QSpec employs a statistical method known as hier-

archical Bayes. The Bayes factor is the ratio of the average

likelihoods of two models. In the case of QSpec, this

describes the ratio of a model that includes a differential

expression term, M2, to a model that does not include such a

term, M1. So for a set of SCs, X, from a given protein, the

Bayes factor B(X) is defined as

BðXÞ ¼
pðX jM2Þ

pðX jM1Þ
¼

R
pðH2jM2ÞpðX jH2;M2ÞdH2R
pðH1jM1ÞpðX jH1;M1ÞdH1

ð1Þ

where p(X|Mi) is the averaged likelihood for model i.
Therefore, a large Bayes factors (e.g. greater than 10) implies

that M2 better describes the data, indicating statistically

significant differential expression for a given protein (for

more details on Bayesian statistics, see [24]). Because the

Bayes factor can be overestimated in the case of large SCs –

e.g. high-abundance proteins – the authors also imposed a

minimum SC-based fold-change requirement of 0.5

between conditions. Additionally, the authors also deter-

mined a ‘‘minimum threshold’’ Bayes factor, B�, to control

the global false discovery rate at approximately 5%.

The SpI is based on two metrics: a protein’s relative

abundance as measured by SCs across repeated replicates,

and its reproducibility as measured by the number of

replicates for each condition in which the protein was

detected. A protein’s SpI is defined as

SpI ¼
�SD

�SD1 �SC

�
ND

D

NT
D

� �
�

�SC

�SD1 �SC

�
ND

C

NT
C

� �
ð2Þ

where SD and SC correspond to the mean SC values for the

disease state and control state, respectively, and ND and NT

correspond to the number of runs in which a protein was

detected in the given state and the total number of runs

conducted for the given state, respectively. The SpI can

range from �1 to 11, with values close to �1 or 11 indi-

cating that a protein is down- or up-regulated in the disease

sample relative to the control sample. Random permutation

analysis is performed to create a null distribution of SpI’s,

from which an appropriate SpI cutoff is chosen corre-

sponding to the desired confidence level.

A reproducibility study by Durr et al. performed on rat lung

endothelial cell plasma membranes concluded that ten repli-

cate runs would be necessary to reach completeness of protein

detections with 95% confidence [25]. These results show that

SCs reflect the variability of MS as a technique. Factors that

influence variability include a protein’s mass, hydrophobicity,

cellular location, and number of trypic peptides, among others;

machine-based factors such as operation in data-dependent

mode and exclusion window; and processing parameters such

as which PTMs are allowed in database searches [26]. As such,

low-abundance proteins may or may not be detected in a given

MS run, and higher abundance proteins are detected at varying

levels in different levels from run to run.

Here we propose a novel statistical method, called ReSASC

(resampling-based significance analysis for spectral counts) for

SC-based LC-MS/MS analysis. ReSASC makes only one

assumption about SC data: its variability. ReSASC is based on

the idea that if a protein is truly differentially expressed between

two conditions, then that differential expression would be

maintained if the samples were to be re-analyzed. For instance,

if ten samples were run in each of two conditions, and then

subsequently re-run, one would expect that truly differentially

expressed proteins would be detected in both analyses.

Obviously the SC values from the new experiment would vary

slightly from the previous one, but ReSASC assumes that the

pattern of differential expression is maintained. Conceptually,

ReSASC is comparable to local-pooled error (LPE; [27]) and

Rank Products [28], both of which were introduced for micro-

array analysis. Like LPE, ReSASC pools protein expression data

based on their run-to-run variability; like rank products,

ReSASC uses permutation analysis to estimate the significance

of a protein’s apparent up- or down-regulation. Effectively,

ReSASC samples similarly expressed proteins to create

synthetic experiments and then compares the SC from these

experiments to see if the initially detected statistical differences

are conserved. We compare ReSASC to QSpec and the SpI, and

show that these three SC-based methods perform comparably.

2 Materials and methods

2.1 Data sets

Five data sets were analyzed by ReSASC: three for validation

and two for comparison to existing methods. The first
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(hereafter referred to as ‘‘replicates’’) consists of seven

replicates of human plasma analyzed over seven non-

consecutive days. Human blood was collected from one

healthy donor at a single time point via venipuncture into

one-tenth volume of ACD (85 mM trisodium citrate, 83 mM

dextrose, and 21 mM citric acid) solution. Platelet poor

plasma was obtained by centrifugation and residual cells

were removed. Proteins were electrophoresed approximately

1 cm into a 7.5% acrylamide SDS-PAGE using a Mini-gel

system (Bio-Rad Laboratories, Hercules, CA, USA) at 150 V.

The acrylamide gel section containing the proteins was cut

out and placed in fixative (50% methanol, 12% acetic acid,

and 0.05% formalin) for 2 h. The in-gel tryptic digestion of

the lanes and the peptide extraction were performed as

described [29]. The extracted peptide solutions were lyophi-

lized and reconstituted to 20mL with 0.1% acetic acid for MS

analysis. Two-microgram samples were loaded onto a

360 mm od� 75mm id microcapillary fused silica precolumn

packed with irregular 5–20mm C18 resin. The samples were

gradient eluted at a flow rate of 60 nL/min with a Surveyor

binary HPLC solvent delivery system (Agilent, Palo Alto,

CA, USA) directly through an ESI source interfaced to an

LTQ-FT ion trap mass spectrometer (Thermo Electron). The

LTQ mass spectrometer was operated in data-dependent

mode in which an initial MS scan recorded the m/z values of

ions over the mass range 300–2000 Da, and then the ten

most abundant ions were automatically selected for subse-

quent MS/MS analysis. All MS/MS data were searched

against a human protein database downloaded from the

European Bioinformatics Institute (http://www.ebi.ac.uk)

using SEQUEST. A static modification of 57.02150 Da for

cysteine residues and variable modifications of 15.9949 and

14.01550 for methionine residues and cysteine residues,

respectively, were allowed. The parent mass tolerance was

set to 10 ppm and the mass tolerance of daughter ions was

set at 0.5 Da. For the human plasma replicates, peptide

identifications were made based on fully tryptic peptides,

using a first-pass filtering of standard criteria as previously

described [30], including cross correlation values of 2.0, 2.2,

and 3.3 for charged states of 11, 12, and 13, respectively.

Higher charged states were not considered. Proteins were

also required to be detected at least twice (SCZ2) across

all runs.

The second and third data set are simulated data sets

provided by Choi et al. [22]. Four biological replicates of yeast

strain BY 4741 were grown in different media, either 14N or
15N [31]. Cells were collected, washed, soluble proteins

extracted by centrifugation, desalted by trichloroacetic acid

precipitation, urea-denatured, reduced, alkylated, and

digested by endoproteinase Lys-C and by modified trypsin.

For each replicate, 500mg of protein extract were analyzed by

three-phase LC coupled to an LTQ linear ion trap equipped

with an ESI source (Thermo Electron). A 12-step MudPIT

[32] run was performed with the spectrometer operating in

data-dependent mode such that the five most abundant ions

were chosen for subsequent MS/MS analysis. Tandem mass

spectra were searched against the NCBI Saccharomyces
cerevisiae database by SEQUEST, allowing a mass tolerance

of 3 amu for precursor ions and 0 amu for fragment ions. No

variable modifications were searched. Detected peptides

were thresholded by the following criteria: DCnZ0.1;

minimum XCorr of 1.5, 2.5, and 3.0 for charged states of 1

1, 12, and 13, respectively, and maximum Sp rank

of 10. As this preparation would not be expected to result

in any differential protein expression, Choi et al.
created two synthetic data sets by randomly shuffling the

rows of the data set and inserting either a twofold or

fourfold increase to the SCs of the first 200 proteins

from the 14N samples. (Hereafter, these data sets are

referred to as ‘‘synthetic 2-fold’’ and ‘‘synthetic 4-fold,’’

respectively.)

The fourth data set (hereafter referred to as ‘‘yeast’’)

consists of four replicate LC-MS/MS runs of yeast strain

BY4741 at two different stages of cell growth: log phase and

stationary phase [31]. Samples were processed and analyzed

in the same manner as the above simulated data sets.

The third replicate from the log phase was found to

be a statistical outlier that could not be corrected by

normalization procedures and thus was not included in the

analysis.

The final data set (hereafter referred to as ‘‘cystic fibro-

sis’’) consists of broncheoalveolar lavage (BAL) fluid

obtained from eight patients with cystic fibrosis and four

healthy controls [23]. Protein samples were reduced, alky-

lated, and digested overnight with trypsin. After concentra-

tion, desalting, drying and re-suspension, the tryptic digests

were separated using 2-D HPLC (Thermo Electron), and

analyzed by an LCQ Deca XP1ion trap mass spectrometer

(Thermo Electron) equipped with an ESI source. The spec-

trometer was operated in data-dependent mode with the

three most abundant ions being selected for subsequent

MS/MS analysis. Dynamic exclusion criteria allowed repe-

ated selection of the same precursor ion twice within a 30-s

window, followed by a 72-s exclusion period. SEQUEST was

used to search all identified tandem mass spectra against the

Human International Protein Index, allowing modified thiol

residues and at most one incomplete cleavage site. For a

protein to be considered identified, it must have been

detected by at least two unique peptides in at least one

sample.

2.2 Pre-filtering

Before applying ReSASC, the data were filtered by requiring

a protein to be detected at least once on average in at least

one of the conditions. This filtering criterion is of compar-

able stringency as the two-unique peptide minimum

criterion, but is less sensitive to non-reproducible outliers.

Of 649, 1508, and 641 proteins identified in the human

plasma, yeast, and BAL fluid, respectively, 228, 906, and 560

passed this filtering criterion.
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2.3 Statistical analysis

ReSASC was coded and run in Matlab version R2007b (The

MathWorks, Natick, MA, USA). Correlation coefficients

correspond to Spearman rank coefficients. All values are

listed as median (inter-quartile range) unless otherwise

stated. The ReSASC pcutoff values were based on k 5 0.95.

For ReSASC analysis, a p0-value of 0.05 was considered

significant.

3 Results

3.1 ReSASC

ReSASC is conceptually related to the LPE test, which esti-

mates overall variance of in a gene expression microarray

experiment by pooling similarly expressed genes. A stan-

dard Bland-Altman plot for a gene microarray experiment is

shown in Fig. 1A, with the corresponding LPE-estimated

variance across the range of gene expression levels shown in

Fig. 1B. A comparable Bland-Altman for a typical proteo-

mics SC data set (Fig. 1C) exemplifies the difficulties in

extrapolating LPE to this type of data. There are far fewer

proteins detected in a MS experiment compared to a

microarray experiment (by approximately one order of

magnitude), and there is distinct aliasing in the plot due to

the discrete nature of SC data. These issues combine to

make variance estimation by LPE difficult. Like LPE,

ReSASC also attempts to estimate pooled properties, but is

permutation-based and non-parametric. ReSASC is a novel

procedure that is used to simulate LC-MS/MS experiments

and then, based on those simulations, to determine if a

protein is truly differentially expressed between conditions.

A flow chart for the ReSASC logic is shown in Supporting

Information Fig. 1. For each condition, ReSASC determines

a protein’s median value and ‘‘scatter’’ values, Si, that

describe the range around its mean value, mp (e.g. for each

SC value, xj, of a given protein, p, Sp;xj ¼ xj=mp). Similar to

SpI in [23], these values estimate a protein’s abundance level

and reproducibility between runs. Next, for each unique

median value, a sampling window is determined incre-

mentally. This process is depicted in Fig. 2A and B. The

purpose of this incremental expansion is to determine a

group of similarly expressed proteins from which hypothe-

tical SCs can be sampled. A radius, ri, around the given

median value, Mi, is chosen to include the closest neigh-

boring median value (e.g. ri 5 min{(Mi�Mi�1),(Mi11�Mi)}).

If there are no outlier S values within this window – when

an outlier is defined as lying beyond one SD from either the

first or third quartiles of the data – then the radius is

incrementally increased in the same way described

previously. This process is repeated until there is an outlier

value, at which point the immediately prior radius is kept. In

this way, each median value contains multiple proteins, all

similarly scattered around their average values. Figures 2C

and D give a graphical depiction of this data with multiple

boxes that show the radius for various median values.

Because few LC-MS/MS experiments are based on ten or

more runs, it is difficult to be confident that any given protein

is absent based on the limited data available. Indeed, a major

caveat to consider when using SC data is the difference

between detection and identification, that is, differentiating

between proteins that are present in the sample but not

detected by MS and proteins that are not present, both of

which will have SCs of zero. To address this issue, the SCs for
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Figure 1. (A) Typical M-A plot based on Affymetrix gene chip data [27]. (B) Experiment-wide variance estimate based on data in (a)

determined by local-pooled error (LPE, [27]). A 5 log2(expression average) 5 log2O(x1x2); M 5 log2(ratio) 5 log2(x1/x2). (C) SC-based

proteomics M-A plot, using data from [22]. Note that for SC data, x 5 (SC11) to eliminate zero values. Due to the small number of proteins

detected in a MS experiment (1508 compared to 12 488 genes in (A)), the plot is underpopulated, making variance estimation difficult. The

discrete nature of SC data also causes aliasing, which hampers normalization difficult and makes statistical analysis by LPE impossible.

Note that the dynamic range of SC-based proteomics is approximately 1/8th that of genomic data (212 versus 215).
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all proteins with at least one zero-value SC are compiled and

the data is modeled by a continuous distribution. MATLAB’s

non-linear least-squares curve fitting algorithm was used to fit

the data to multiple distributions and calculate the squared 2-

norm (
P
x

f ½ðxÞ�yðxÞ�2, where f(x) is the least-squares fitted

function evaluated at x and y(x) is the actual relative

frequency of SC 5 x in the compiled data) of the residuals

from each fit. Based on this analysis, it was determined that

the data is best approximated by an exponential distribution

(see Fig. 3A and B).

From the measured SC data, 100 synthetic data sets were

created as shown below. Preliminary experiments showed that

taking n 5 100 synthetic sets yields results that are highly

correlated to those based on larger n (data not shown). In all

data sets tested, the Spearman correlation coefficient between

the results for n 5 100 and n 5 1000 was greater than 0.90,

with po0.001. In each of these synthetic data sets, the SCs for

proteins with non-zero median value are determined by

sampling from within the appropriate radius window.

Figure 4A shows the number of proteins whose SCs were

sampled at each unique median value. For proteins with zero

median value, a random sample was taken from the fitted

exponential distribution. For each set of synthetic SCs, the

non-parametric Wilcoxon rank-sum test was performed

between the two groups, resulting in 100 p-values per protein.

One important feature of the ReSASC method is that it allows

synthetic experiments to consist of more runs than the

original experiment. To increase the power of the non-para-

metric Wilcoxon test, ReSASC’s synthetic data sets are

populated to a minimum of ten runs in each condition.

To determine the appropriate p-value to be considered, a

null-distribution of p-values was produced. The runs from

the different conditions (cases and controls) were randomly

permuted and for each permutation, a Wilcoxon p-value was

calculated for each protein. After 1000 permutations, a null

distribution was constructed with the same number of

p-values as with the synthetic data. Figure 4B shows the

cumulative p-value distribution for the null (dashed line)

and synthetic (black line) data sets, respectively. As expected,

the p-values for the null data set are approximately
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Figure 2. (A) Determination

of appropriate sampling

radius, ri around median

value Mi 5 25.5. For the radii

rn (n 5 1y4), corresponding

quartile boundaries and

IQRs are given in (B). rn is

increased until an outlier

(denoted by an open circle)

exists in the data. At this

point, ri is defined as n�1.

(C) Distribution of Mp versus

Sp,i for all p and i for a single

condition [22]. Boxes corre-

spond to sampling radii for

Mi 5 {371.5, 587, 874, 1097,

1480, 1972}. (D) The same

plot for M ranging from 0 to

225 with boxes imposed for

Mi 5 {43, 65.5, 77, 84, 111.5,

154, 188.5}.
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uniformly distributed while there are far more significant

p-values in the synthetic data. To determine an overall

confidence level, k, a p-value cutoff was taken based on the

null distribution: pcutoff|(k) 5 (1�k)th quantile of the null

p-value distribution. Finally, each protein was given a new

p-value, p0, defined as

p0 ¼
]p-valuesðsimulation-basedÞ > pcutoff

100
ð3Þ

This p0-value corresponds to the ReSASC-based pro-

bability of a type I error, i.e. the identification is a false

positive.

3.2 ReSASC is distinct from Wilcoxon test and fold-

change cutoffs

Two sets of analyses were performed to validate the applic-

ability of ReSASC and to show that it provides useful

information beyond a Wilcoxon test alone or beyond a

simple fold cutoff criterion. As a first validation step,

ReSASC was run on the replicates data set whose runs were

randomly separated into ‘‘case’’ and ‘‘control’’ sets. No

proteins were found to be significantly different between

these two groups at any relevant confidence level, specifi-

cally kZ0.60 (data not shown). Next ReSASC-based p-values

were calculated for the yeast and cystic fibrosis data sets,

and these values were correlated with the protein’s corre-

sponding average fold-change and with the protein’s

Wilcoxon p-value. Figures 5A and B show the respective

scatter results of this analysis for the cystic fibrosis data set.

Correlation analysis was highly significant for all

comparisons (ReSASC p0 versus Wilcoxon p-value:

R 5 0.7619, po0.0001 (yeast); R 5 0.8746, po0.0001

(cystic fibrosis). ReSASC p0 versus fold-change: R 5�0.6075,

po0.0001 (yeast); R 5�0.6901, po0.0001 (cystic fibrosis)).

In all cases, while the ReSASC p0-value is significantly

correlated to the Wilcoxon metric, the two are in no instance
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equivalent. In fact, the upper triangular distribution

of the pWilcoxon–p0 scatterplots indicate that the ReSASC

p0-value is capable of excluding proteins that may have

appeared significant based on a Wilcoxon test alone, or

alternatively of identifying proteins that were only margin-

ally significant.

Likewise, ReSASC can offer additional information

beyond a simple fold-change cutoff. Previous studies have

found that while SCs are effective in detecting differential

expression between two groups, in general they are more

effective in detecting large changes rather than small

(e.g. twofold or less [17, 33, 34]). However, by incorporating

the variable nature of SCs, ReSASC can identify as signifi-

cant proteins with relatively small fold-changes. For exam-

ple, in the cystic fibrosis data sets, the smallest significant

fold-change was 1.7; and in the yeast data set, ReSASC

was able to detect a fold-change of 1.2 in the highly

expressed protein, glyceraldehyde-3-phosphate dehy-

drogenase, isozyme 1 (NP_012483.1; mean SC increased

from 957 (log phase) to 1182 (stationary phase)).

3.3 ReSASC outperforms traditional statistical tests

and performs comparably with SpI and QSpec

To compare the power of ReSASC with traditional statistical

tests as well as with specialized tests for SCs (specifically

QSpec and the SpI), receiver operator curves were

constructed for each of the synthetic data sets. While there

was no significant difference among any of the tests in

detecting twofold changes (data not shown), Fig. 5C shows

that all SC-based techniques outperformed the traditional

t-test and Wilcoxon test in terms of their ability to detect a

fourfold change. The caption reports the area under the

curve (AUC)7 the width of the 95% confidence interval

around that value.

3.4 Identification of differentially expressed proteins

in yeast

Of the 906 proteins considered, 299 were found to be signif-

icantly different after QSpec analysis. Figure 6A shows a Venn

diagram comparing the proteins determined to be differen-

tially expressed between the two growth phases by ReSASC

(with pcutoff based on k 5 0.95) and QSpec, respectively.

ReSASC only claims an additional three proteins as signifi-

cant relative to QSpec. (These three proteins are listed in

Fig. 6C as well as five proteins identified by QSpec but not

ReSASC, with ReSASC-based p0-value40.90.) ReSASC

corroborates 128 (43%) of the proteins determined to be

differentially expressed by QSpec. 26 (15%) of the proteins

identified by QSpec but not ReSASC were identified in only

one out of seven runs, and 59 (35%) were detected in at most

two runs out of the seven, indicating that ReSASC is less

affected by whether or not a protein was detected in one

condition but not the other. Figure 6B demonstrates the

relationship between the ReSASC-based p0-value and QSpec’s

Bayes factor (B(X)). The two metrics are significantly corre-

lated (R 5�0.7538; po0.0001). All identified proteins, along

with their SCs, QSpec’s Bayes factor, and ReSASC p0-value are

listed in Supporting Information Table 1.

3.5 Identification of differentially expressed proteins

in BAL fluid

Next, we applied ReSASC to the cystic fibrosis data set, which

is more relevant for disease biomarker discovery. Figure 7A

shows a Venn diagram comparing the distribution of proteins

identified as significant by ReSASC and SpI, respectively. Of

the 55 proteins identified only by SpI, 65% were detected in

only one sample, with the average SC in the detected condi-

tion generally being very small (3.5, range 5 2.75–4.75),
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Figure 5. ReSASC p0-values (as defined in Fig. 2) versus (A) fold-change (Spearman correlation coefficient R 5�0.6075, po0.0001) and (B)

Wilcoxon p-value (R 5 0.7619, po0.0001) for yeast data set [22]. (C) Receiver operator curve depicting the sensitivity and specificity of
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indicating a heightened sensitivity to whether or not a protein

is detected independent of the SC values from the second

condition. By contrast, ReSASC was able to identify relatively

small fold-changes (3.5, range 5 2.7–4.6) among proteins that

were identified in both groups.

Figure 7B shows the relationship between each protein’s

ReSASC-based p0-value and the absolute value of its SpI. The

two metrics are significantly correlated (R 5�0.7512;

po0.0001) as expected, since both metrics are based entirely

on the proteins’ SCs. The number of proteins identified as

significant by both methods is 102, or 53% of the proteins

identified as significant by either method. Several proteins

from the cystic fibrosis data were measured by ELISA and

the ReSASC p0-value was shown to correlate well with these

proteins’ p-values as determined by t-test. Of the six proteins

listed, five were found to be statistically different by ELISA,

five by SpI, and four by ReSASC. Only TIMP-1 differs

between ReSASC and ELISA, with ReSASC claiming

marginally significance with p05 0.045. When a 99%

confidence level is used, corresponding to k 5 0.99 (as is

used by Fu et al.), ReSASC agreed with ELISA results in all

cases, thus validating the ReSASC approach by comparison

with a gold standard ‘‘ground truth’’. These results are

described in more detail in Fig. 7C. A list of all identified

proteins together with their SpI and ReSASC-based p0-value

is given in Supporting Information Table 2.

4 Discussion

As MS becomes a central tool for biomarker discovery, it is

increasingly necessary to understand how reproducible its

results are. Current literature on this topic generally focuses

on reproducibility in terms of relative quantification, that is,

the reproducibility of detected differences between multiple

samples. Stable isotope labeling methods dominate such

quantification, and there is an abundance of information

detailing their reproducibility levels, which generally are

relatively high. Although labeling methods are useful, they

have been associated with reduced sensitivity of protein and

peptide detections due to incomplete labeling. As such, several

alternative methods – specifically spectral counting – have

become increasingly popular although they are associated

with lower levels of reproducibility. Liu et al. developed a non-

linear model partially based on SCs to predict the total

number of proteins within a specific abundance level that

would be detected after a given number of replicates [35]. Such

a model’s explanation of run-to-run variability could possibly
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NP_012113.1 0 0 0 0 0 7 0 TRUE 0.935 
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Figure 6. (A) Venn diagram

showing the number of

proteins determined to be

differentially expressed in yeast

between the log and stationary

phases [31] by ReSASC and

QSpec [22], respectively. The

large overlap in ReSASC-detec-

ted proteins suggests that

both methods find a common

set of differentially expressed

proteins. (B) ReSASC p0-values

versus QSpec Bayes factors

(R 5�0.7538; po0.0001). The

Bayes factor is less uniformly

distributed than p0, with 818

(90.3%) proteins having Bayes

factors at either extreme (r100

orZ9900). At a p0 significance

level of 0.05 (dashed line), the

three proteins identified by

ReSASC but not by QSpec as

differentially expressed are

noted with open circles. (C)

Table indicating the SCs from

log phase (L1, L2, L4) and

stationary phase (S1y4) of the

three proteins identified by

ReSASC but not QSpec (top),

and five proteins identified by

QSpec with ReSASC p040.9

(bottom).
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be extrapolated to a statistical model for differential expression

based on SCs, that is, if MS’s variability could be effectively

modeled, then that variability could be extrapolated to a

theoretically robust statistical method based on SCs as output.

However, Liu’s model assumes information about mixture

complexity, specifically abundance levels, the number of

proteins at each abundance level, and the total number of

proteins in the mixture. Generally, such information is

unknown to the experimenter.

To avoid making these assumptions, ReSASC was

developed as a non-parametric, permutation-based method

to account for MS’s inherent variability and determine

differential expression between states. By pooling proteins

that are similarly expressed – here defined to imply that the

proteins in question have similar median SC values and

the data set contains no outliers – ReSASC is able to exploit

the variability information contained in SC data.

SC-based significance analysis has recently received signif-

icant attention. In addition to QSpec and SpI, Carvalho et al.
recently tested various non-standard normalization procedures

with different feature recognition tests and concluded that Z-

normalization combined with a forward-support vector

machine model (including a penalty function) performed

optimally in identifying differences in yeast [19]. APEX

(Absolute Protein Expression), introduced by Lu et al. also

proposed machine learning techniques, but after the addition

of a SC correction factor to account for the variability of peptide

detection by MS [21]. LSPAD (Localized Statistics of Protein

Abundance Distribution) performs Fisher’s exact test, which

effectively compares the log-transformed SCs from one protein

to other similarly expressed proteins from the same experiment

[20]. One advantage of LSPAD compared to the previously

mentioned methods is that it does not require replicates since a

protein’s SCs are pooled from all runs in a given condition.

However, in general all of these methods are statistically

complex, and also require more information from an experi-

ment than simply the proteins’ SCs. As such, some are difficult

to implement and understand. LSPAD – though easier to

implement – is highly sensitive to outliers since it does not

consider how reproducibly a protein was or was not detected.

ReSASC is the first method to apply a variation

of the non-parametric Wilcoxon test to SCs. Up to this point,

the Wilcoxon test has been used in MS experiments to

detect differences based on labeling ratios, LC-MS

feature ratios, and protein spots [33, 36, 37]. Non-parametric

tests are by definition less powerful than their parametric

counterparts, and they are not effective at taking fold-

increases into account when determining statistical

significance. For example, a control group consisting of SCs

(0, 1, 1, 0, 1, 2) compared to a diseased group consisting of

SCs (3, 3, 3, 4, 3, 3) would return the same p-value as the

same control compared to a diseased group of SCs (100, 101,

105, 98, 100, 97). By simulating additional runs, ReSASC

improves the power of the Wilcoxon test because synthetic

runs are more likely to show no difference in the former

than the latter case.

ReSASC has several limitations, most notably that it

requires replicate samples. We believe that a minimum of

Mean Spectral Count ReSASC p' Mean Conc. (ng/ml) 

Protein CF (Cases) Controls SpI k=0.95 k=0.99 CF (Cases) Controls p-value 

MMP-9 113.0 0.0 1.00 <0.0001 <0.0001 748.0 1.6 0.0050 

MMP-8 46.5 0.0 1.00 <0.0001 <0.0001 199.0 0.3 0.0001 

MPO 332.0 3.2 0.99 <0.0001 <0.0001 3630.0 1.8 0.0060 

TIMP-1 8.5 1.5 0.74 0.0450 0.1760 62.4 3.5 0.0700 

ALB 1680.0 3060.0 -0.29 0.0800 0.2670 44500.0 56500.0 0.5000 

ICAM-1 1.3 34.3 -0.96 <0.0001 <0.0001 4.0 13.2 0.0009 
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Figure 7. (A) Venn diagram

depicting the distribution of

proteins identified as signifi-

cantly differentially expressed

between patients with cystic

fibrosis and healthy controls

[23] by ReSASC and the spec-

tral index (SpI) method [23],

respectively. Of the 55 proteins

identified only by SpI, 65%

were detected in only one

sample, with the median SC in

the non-zero runs being small

(3.5, range 5 2.75–4.75). (B)

ReSASC p0-values versus SpI.

ReSASC p05 0.05 is marked

by a dashed line. |SpI| and

p0 are correlated (R 5�0.7512;

po0.0001) as expected since

both metrics are based on

the proteins’ SCs. (C) Table

comparing ReSASC p0 (at 95%

and 99% confidence levels), SpI

(at 99% confidence level) and

ELISA-based p-values (t-test)

for detecting differential

expression between the two

groups.
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three replicates in both conditions are necessary for credible

results since there is no distinction between the mean and

the median of a single value or of two values. A retrospective

power analysis supports this hypothesis, with estimated

power reaching saturation at three runs (data not shown).

Additionally, a protein’s median value can only be approxi-

mated coarsely and is sensitive to outliers at low run

numbers, which could in turn affect its sampling window

and synthetic SCs. On the other hand, ReSASC is also

affected by the distribution of SCs in a data set – specifically

if many proteins are expressed at a similar level – so that the

variability is low. Supporting Information Fig. 2 demon-

strates ReSASC’s robustness as the distribution of SCs

changes to become less variable.

ReSASC’s running time scales linearly with the number

of proteins in a data set (mean R2 based on linear regression

is 0.992). As such, there is an obvious trade-off between run

time and p0-value accuracy, since p0-values are best estimated

when many proteins are present in each sampling window.

Finally, ReSASC is currently only able to compare two states

and therefore cannot be applied to experiments with more

conditions or to time course data. In summary, ReSASC is

an effective and robust tool for differential expression

studies based entirely on SC data. Its increased stringency

relative to existing metrics make it preferable for biomarker

discovery studies, and its conceptual simplicity makes it

easier to understand and operate compared to existing

SC-based tests.

This work was supported by the American Heart Association
[0815327F] and the wallace H. Coulter Foundation. ReSASC is
currently being re-coded from MATLAB into the R programming
language and we hope to submit the package to the BioCon-
ductor repository. The authors will run ReSASC for any
researcher interested in using the method.

The authors have declared no conflict of interest.
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