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Neutrophil Adhesion and Activation under Flow

ALEXANDER ZARBOCK.,*1 AND KLAUS LEY*
“Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA;
TT)epm"tment of Anesthesiology and Intensive Care Medicine, University of Miinster, Miinster,
Germany

ABSTRACT
Neutrophil recruitment into inflamed tissue in response to injury or infection is tightly regulated. Reduced
neutrophil recruitment can result in a reduced ability to fight invading microorganisms. During inflamma-
tion, neutrophils roll along the endothelial wall of postcapillary venules and integrate inflammatory signals.
Neutrophil activation by selectins and chemokines regulates integrin adhesiveness. Binding of activated
integrins to their counter-receptors on endothelial cells induces neutrophil arrest and firm adhesion.
Adherent neutrophils can be further activated to undergo cytoskeletal rearrangement, crawling, transmigra-
tion, superoxide production, and respiratory burst. Signaling through G-protein-coupled receptors, selectin
ligands, Fc receptors and outside-in signaling through integrins are all involved in neutrophil activation, but
their interplay in the multistep process of recruitment is only beginning to emerge. This review provides an

overview of signaling in rolling and adherent neutrophils.
Microcirculation (2009) 16, 31-42. doi:10.1080/10739680802350104
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Polymorphonuclear neutrophils (PMN) belong to
the innate immune system and constitute the main
defense against invading bacteria and fungi. The
recruitment of neutrophils out of blood vessels into
injured tissue proceeds in a coordinated series of
steps [13,90,57]. The activation and recruitment of
neutrophils by different signals are tightly regulated.
Defective leukocyte recruitment, such as that seen in
leukocyte adhesion deficiency (LAD), leads to an
inappropriate inflammatory response to injury or
infection [5]. Patients with this disease suffer from
recurrent bacterial infections and have a reduced life
expectancy [5]. However, overwhelming neutrophil
activation is also associated with tissue damage [67].

The classical neutrophil recruitment cascade com-
prises “capturing” (“‘tethering”), rolling, slow roll-
ing. arrest, postadhesion strengthening, crawling.
and paracellular or transcellular transmigration
[57]. Capturing is the first contact between neutro-
phils and the endothelium of postcapillary venules
mediated by selectins and their counter-receptors
[41]. During this initial step, selectins as well as
chemokines presented on the inflamed endothelium
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may initiate the activation of signaling pathways in
neutrophils that regulate integrin adhesiveness.
Binding of activated integrins to their counter-
receptor leads, depending on the conformational
state of the integrin, either to a reduction of the
rolling velocity or arrest. However, the integrins are
not only responsible for the attachment of neutro-
phils to the endothelium, but they are also able to
transfer signals from the extracellular domain into
the cell (i.e., outside-in signaling) [29]. These
signals strengthen adhesion and induce superoxide
production, respiratory burst, and transmigration.

ACTIVATION OF NEUTROPHILS BY SELECTINS: IV
VIVO AND IN VITRO EVIDENCE

Selectins

The selectins are type I membrane glycoproteins
composed of an amino terminal C-type lectin
domain, a single epidermal growth factor (EGF)-
like domain, two to mnine short consensus repeat
(SCR) domains, a membrane spanning region, and a
cytoplasmic tail [41]. The family includes three
molecules that display different patterns of expres-
sion and function.

L-selectin is expressed on almost all circulating
leukocytes and is involved in lymphocyte homing
[75] and leukocyte recruitment to sites of inflam-
mation [57]. Following activation of leukocytes,
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.-selectin can be shed by proteolytic cleavage near
the cell surface. A dlblIlT(“TI'III and motallopcptldasc
(ADAM)-17 and at least one other enzyme are
involved in constitutive and activated L-selectin
shedding [85]. E-selectin expression is limited to
inflamed endothelial cells and is induced at the level
of transcription, as inhibitors of either transcription
or translation inhibit E-selectin expression [10].
P-selectin is inducibly expressed on activated en-
dothelium and platelets. P-selectin is stored pre-
formed in the a-granules and Weibel-Palade bodies
of platelets and endothelium, respectively. Following
activation, P-selectin is rapidly expressed at the cell
surface as a result of fusion of these granules with
the plasma membrane. Further, P-selectin expres-
sion on endothelium is also regulated transcription-
ally [31]. but the regulation is different in mice and
humans [107]. In many assays, P-selectin is the
dominant selectin in mice, but it is not clear whether
this is also true in humans.

Capturing and rolling of neutrophils, which greatly
facilitate subsequent arrest and recruitment, are
mediated by selectins. Indeed, triple-selectin knock-
out mice [16] have a severe defect in neutrophil
recruitment and other defects. All three selectins can
mediate rolling, but the rolling behavior of neutro-
phils on the selectins is different. In venules of the
cremaster muscle, the rolling velocity of leukocytes
on L-selectin (130 pm/s) [39] is faster than
the velocity on P-selectin (40 pm/s) [39], whereas
E-selectin  mediates slower rolling (3-7 pm/s)
[48,109]. Ex vivo data suggest that the simultaneous
presence of E- and P-selectin has a synergistic effect,
with P-selectin increasing the number of rolling cells
and E-selectin reducing rolling velocity [87]. This
mechanism may explain why neutrophil recruitment
is enhanced when both selectins are expressed.
However, knocking out the Sele gene encoding k-
selectin has little effect on neutrophil recruitment
[50] and knocking out Selp only delays recruitment
by two to four hours [60].

In addition to the direct interaction of neutrophils
with the endothelium, neutrophils can also be
recruited by ““secondary capturing” [110]. PSGL-1
on free-flowing neutrophils can bind to P-selectin
presented by adherent platelets [18] and L-selectin
on free-flowing neutrophils can interact with PSGL-
1 presented by adherent leukocytes [22] or leuko-
cyte-derived fragments [38].

Counter-receptors

P-selectin glycoprotein ligand (PSGL)-1 is a homo-
dimeric mucin-like 220-240-kDa glycoprotein that
consists of an extracellular, transmembrane, and
cytoplasmatic domain [61]. It is expressed on all
leukocytes and is mainly located in lipid rafts on
the top of microvilli [1]. PSGL-1 can bind L- [88],
P-[66], and E-selectin [105]. The post-translational
modifications of PSGL-1 are important for optimal
selectin-binding capacity. PSGL-1 requires o2,3-
sialylated and o1,3-fucosylated core2 O-glycans to
bind P-selectin [61]. Core2 N-acetylglucosaminyl
transferase-1 is required to increase the binding
affinity of PSGL-1 to P- and L-selectin [21],
whereas the sulfation of tyrosine residues near the
N-terminus optimizes the binding of PSGL-1 to
P-selectin [61]. E-selectin binding to PSGL-1 re-
quires sialylated and fucosylated O-glycans but not
tyrosine sulfation [61]. The manipulation of the
core-type protein glycosylation of PSGL-1 by elim-
inating the polypeptide N-acetylgalactosamine
transferase-1 reduces the binding capacity of
PSGL-1 to P- and E-selectin in vitro and in vivo
under flow [96]. Due to the differences in the amino-
acid sequence of the extracellular domain and
glycosylation pattern of mouse and human PSGL-1
[61,106]. the binding affinities and. consequently.
the signaling characteristics of the two molecules
might be different.

The conserved cytoplasmic tail of PSGL-1 comprises
63 amino acids and interacts with cytoskeletal
proteins [61]. Proteins of the ERM (ezrin-moesin-
radixin) family link the juxtamembrane region of
the cytoplasmatic tail of PSGL-1 with the cytoske-
leton in the uropod of migrating cells [4.97].
Further, the interaction between the proteins of the
ERM-family with the cytoplasmatic tail of PSGL-1
is important for the formation of protrusive mem-
brane structures [12]. In addition to the interaction
with ERM proteins, a juxtamembrane region of 18
amino acids forms a constitutive comp]ex ‘with Nef-
associated factor 1 (Nafl), which is involved in P-
selectin-induced signaling through PSGL-1 [100]. A
recent study has identified a new molecule interact-
ing with the cytoplasmatic tail of PSGL-1 [79]. The
sele( tin lmand interactor, cytoplasmic-1 (SLIC-1;
human o1tholog of the mouse sorting nexin 20),
binds phosphoinositides and targets PSGL-1 to
endosomes, but does not participate in PSGL-1-
induced signaling or leukocyte recruitment [79].
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The E-selectin ligand, ESL-1, is a 150-kDa glyco-
protein, which is localized in the Golgi apparatus
and on the cell surface of lcukocytcs [91]. In
contrast to PSGL-1 and L-selectin, ESL-1 is not
located on the tips of microvilli [91]. ESL-1. which

can bind E-selectin in vitro and in vivo, is carrier of

the HECA452 carbohydrate epitope, and sialic acid
and fucose are required for achieving E-selectin

binding capacity [92,35,55].
In addition to PSGL-1 and ESL-1, neutrophils

express other E-selectin ligands, including CD44
[35.42], macrophage antigen (Mac)-1 (oyB2)
[17,112], and other unknown and poorly character-
ized ligands [74.3]. Further, L-selectin from human,
but not from mouse, neutrophils is able to bind
E-selectin [114,73]. Sialic acid on L-selectin is
necessary for the binding to E-selectin [114].

Signaling Events and Consequences In Vitro

Several lines of evidence show that neutrophil
binding to P-selectin in vitro leads to the activation
of neutrophils. Isolated human neutrophils stimu-
lated with paraformaldehyde-fixed platelets, P-se-
lectin-lgG fusion protein, or antibody against PSGL-
1 show enhanced tyrosine phosphorylation [23].
Stimulation of murine bone-marrow-derived neu-
trophils with P-selectin-IgG or cross-linking PSGL-1
with complete antibodies or F(ab")s fragments leads
to an increased production of reactive oxygen
intermediates [11] and Mac-1 activation, which in
turn, leads to increased binding of Mac-1 to ligands
[1]. A recent study dissected the proximal signaling
pathvs ay followmﬂ P-selectin engagement. [n vivo
and in vitro data demonstrdted lhd1 dl[Ilt‘[‘l( but not
monomeric, purified soluble mouse P-selectin and
recombinant mouse P-selectin receptor-Ig fusion
protein, which included the lectin domain, the
epidermal growth factor domain, and the first four
and part of the fifth complement-like repeat do-
mains of mP-selectin fused with the heavy chain of
mouse immunoglobulin G, induce integrin activa-
tion on l(uk()wt(‘s with a subsequent increase of
leukocyte adhesion to fibrinogen and ICAM-1 [100].
These fm(hnﬂs suggest that PS(,L 1, like growth-
factor receptors [6], requires dlmenzatlon. It is
unknown whether dimeric P-selectin binds to two
P-selectin binding sites in the same PSGL-1 dimer,
or whether it induces clustering of adjacent PSGL-1
dimers. In response to PSGL-1 engagement, Src
family kinases are activated, which in turn, phos-
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phorylate Naf1 following the stimulation of isolated
human neutrophils or 293 cells cotransfected with
PSGL-1 and Naf1 with mP-selectin-Ig [100]. This is
necessary to recruit and activate the phosphoinosi-

tide-3-OH kinase p85-p1108 heterodimer and, sub-

sequently, induce downstream signaling [100].

Engagement of L-selectin can also lead to the
activation of neutrophils. Early studies demon-
strated that L-selectin engagement by antibodies
or ligand mimetics increase intracellular calcium
levels, induces tyrosine phosphorylation, superoxide
production, and production of Interleukin (IL.)-8
and tumor necrosis factor alpha (TNF)-o [53.98].
Although cross-linking of L-selectin by antibody
leads to increased Mac-1 adhesiveness [3], L-
selectin-dependent rolling of isolated human neu-
trophl]s on peripheral- node addressin and ICAM-1
ina dedH(,l pldtc flow chamber at a shear stress of
1.8 dy n/em? is not sufficient to induce neutrophil
arrest under flow [51]. This apparent discrepancy
suggests that L-selectin cross-linking may be neces-
sary, but not sufficient for signaling. Most of the
studies showing neutrophil activation used intact
monoclonal antibodies to L-selectin. These antibo-
dies may also engage and activate Fc receptors and
induce neutrophll activation through a combination
of L-selectin and Fec-receptor-mediated signaling.
Some studies used F(ab")s fragments of L- belecun
antibodies and cross-linked them by secondary
F(ab)y fragments [33] in order to stimulate neu-
trophils. Thls approach excluded Fe-receptor en-
gagement, but still induced protein tyrosine
phosphorylation [99].

In vitro stimulation of human neutrophils with
soluble recombinant human E-selectin, lacking the
transmembrane and cytoplasmic domains and the
last two consensus repeats, for 15 minutes induces
an increased Po-mediated adhesion (76), tyrosine
phosphorylation-dependent superoxide release [77],
and polarization without affecting whole-cell de-
formability, as measured by flltel assay [70].
Although soluble E-selectin did not induce calcium
IIlObllMdllOIl in isolated human neutrophils by itself
in vitro, the elevation of intracellular calcium con-
centration lasted longer in the presence of E-selectin
followmg (’hemokme stimulation [77.62]. This effect
is mediated by Src-kinase- and PIl(3)K-dependent
activation of store operated calcium entry [62].
Further, in vitro data with isolated human neutro-
phils and E-selectin transfected 300.19 cells show
that the formation of heterotypic aggregates, p38
MAPK phosphorylation, and surface upregulation
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of integrins are shear stress dependent [34]. E-
selectin engagement under shear-stress conditions
induces calcium influx in human neutrophils [80].
However, these studies do not address the question
of which E-selectin ligand is responsible for the
observed effects. E-selectin  engagement under
shear-stress conditions also induces the redistribu-
tion and clustering of L-selectin and PSGL-1 to the
trailing edge of human neutrophils [78]. In vivo,
CD44 was found to be required for the redistribution
of the adhesion molecules in a p38-dependent
manner [35] (see Table 1). The redistribution and
clustering of these adhesion molecules may provide
an additional platform for capturing circulating
leukocytes, which in turn, enhances leukocyte re-
cruitment through cell-cell-interactions [88].

Using a new autoperfused flow chamber system
[15], which allows the investigation of neutrophils in
whole blood on different substrates, demonstrated
that E-selectin engagement activates LIFA-1 and

induces an intermediate affinity state of LFA-1,
which transiently binds to ICAM-1 and reduces the
rolling velocity on E-selectin and ICAM-1 without
inducing arrest [109] (Figure 1). This E-selectin
signaling pathway is PSGL-1 and Syk-dependent
[109] (see Table 1).

In contrast to the autoperfused flow chamber
system, where rolling is observed at 6.0 dyn/cm®
and more, flow chamber experiments with isolated
human neutrophils on E-selectin (site density of up
to 885 sites/um?) do not show neutrophil-substrate
interactions at shear stresses above 3.6 dyn/cm2
[52]. Neutrophils in whole blood interact with E-
selectin in vivo under higher wall shear stress
conditions [48,109], but additional molecules may
contribute. Further, parallel-plate flow chambers
with isolated human neutrophils show that neutro-
phils, in the absence of chemoattractants, adhere to
L. cells coexpressing E-selectin and [CAM-1 [84].
This may be caused by the isolation procedure

Table 1. Known signaling pathways during leukocyte recruitment

Ligand Receptor

Biological effect

E-selectin —» CD44

Rolling

E-selectin

!

v ~
P-selectin  —» PSGL-1

E-selectin —» PSGL-1 =----c-occmcmcaao »SyK==m=mmmmmmemmmcmeeeoae » Forcing LFA-1 in the

................... » p38 ----------------------y redistribution of L-selectin and

_______________ —intracellular Ca®* ———————————————» 9(g0)

< >Naf- ~------ >

? —> L-selectin ---------------- + shedding -------------------- > regulation of rolling velocity,

intermediate affinity
conformation, mediating slow
rolling (119)

PSGL-1 to the rear trail of
neutrophils, this probably
mediates secondary

recruitment of neutrophils (35,78)

................... » Activation of Mac-1, which -
supports leukocyte adhesion to
fibrinogen and ICAM-1 (100)-

inducing of arrest and
transmigration (32, 33)

Arrest

chemokines —» GPCR — Gai, +GBy—»PLC—»IP;+DAG»>Ca?*—» calDAG-GEFI-»Rap1-» Integrin activation and

leukocyte arrest (108, 71, 14,
37,8, 82)

? —» PSGL-1

Post-Arrest

— Moesin/Ezrin —» Syk--==-=-===-==-==-=----- » Activation of transcription

ICAM-1 —» integrins  --» S~ ——— ITAM—— Syk--—+ WASp---»Vav ---» Superoxide production and

Factors (97)

degranulation, post-adhesion
strengthening (28, 25, 65,
2,113, 26)

The shown signaling pathways may be activated by several inputs and converge or interact with each other. Interactions that are depicted as
dashed lines may be indirect. a;By, G-protein subunits; PLC, phospholipase C; Naf-1, Nef-associated factor 1; Src, Src-family kinases; Mac-1,

macrophage antigen; calDAG-GEF-1. calcium-diacylglycerol guanine nucleotide exchange factor I; Rap1, Ras-related protein 1; Syk, spleen
tyrosine kinase; IP3, inositol triphosphate; PI3K, phosphotidylinositol 3-kinase; Ca’*, calcium; GPCR, G-protein-coupled receptor; LFA-1,
lymphocyte function antigen-1; ICAM-1, intercellular adhesion molecule-1; PSGL-1, P-selectin glycoprotein ligand.
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B | P-selectin

| P-selectin+ICAM-1 | P+I+low CXCL1

Figure 1. Two modes of neutrophil arrest: slow rolling versus immediate arrest. A. Neutrophils rolling on E-selectin
pick up activating signals through P-selectin glycoprotein ligand (PSGL-1) and spleen tyrosine kinase (Syk), resulting
in the partial activation of lymphocyte function antigen-1 (LFA-1) to the extended conformation with closed
headpiece, indicated by the pink color. As soon as a neutrophil rolling on E-selectin encounters a surface with E-selectin
and intercellular adhesion molecule-1 (ICAM-1) (orange), the rolling velocity immediately decreases because LFA-1
now engages I[CAM-1. This is schematically represented in the velocity trace on top. Even a small amount of a CXCR2
ligand, such as immobilized CXCL1 (red), leads to arrest. B. Neutrophils rolling on P-selectin show little evidence of
LFA-1 activation. Their rolling velocity changes little when ICAM-1 becomes available. A low dose of CXCL1
coimmobilized with P-selectin and ICAM-1 (P+1) cannot induce arrest, but a high dose can (red).

known to activate neutrophils and induce increased
expression of Mac-1 and decreased surface expres-
sion of L-selectin [30,24,47]. The differences seen in
studies using whole blood on recombinant proteins,
compared with studies using isolated neutrophils on
transfected L cells, may also be due to the expression
of other adhesion molecules and/or cytokines by L
cells. In addition, species differences between human
and mouse neutrophils may explain some of the
differences.

Signaling Events and Consequences During
Neutrophil Rolling

In the absence of additional stimuli, such as other
selectins, cytokines, and chemokines, P-selectin
binding can prime neutrophils, but not fully activate
integrins and induce arrest. These data are sup-
ported by in vivo experiments in uninflamed dermal
microvessels [103] and flow chamber experiments
that showed that the rolling velocity of neutrophils
in whole blood is reduced on P-selectin and ICAM-1,
compared to P-selectin alone [109,15]. However, in
the presence of other proinflammatory stimuli, P-
selectin acts synergistically and contributes to full

integrin activation [100]. Elimination or blocking of
P-selectin by gene targeting or antibody reduces
neutrophil recruitment into the peritoneal cavity
following thioglycollate injection. However, whether
this reduction of neutrophil recruitment is only
caused by a reduction of capturing or by decreasing
the signaling input remains to be elucidated.

The activation of neutrophils by L-selectin engage-
ment is also important in vivo. Blocking L-selectin
shedding by a hydroxamic acid-based protease
inhibitor increases L.-selectin expression on the sur-
face of neutrophils and augments signal input
through L-selectin [33]. These changes were asso-
ciated with a reduced rolling velocity [32], increased
the “smoothness™ of rolling, enhanced arrest, and
transmigration [33] (see Table 1). Interstingly, this
influence of L-selectin shedding on rolling velocity is
cell specific, since increased L-selectin surface ex-
pression on T-lymphocytes does not influence the
rolling velocity [27]. However, subphysiological L-
selectin levels on T-lymphocytes increased the roll-
ing velocity in vitro and in vivo as well as reduced
homing to lymph nodes [27]. These data suggest
that there is a threshold density of L-selectin on T-
lymphocytes that is required for optimal homing to
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peripheral lymph nodes. Elimination of ADAM17,
which is involved in activated L-selectin shedding,
by gene targeting increases the presence of L-
selectin on the surface of neutrophils and enhances
neutrophil rolling, arrest, and recruitment in a
peritonitis model (K. Ley, E. Raines, J. Tang, A.
Zarbock, unpublished observation). These data
suggest that L-selectin has an important signaling
role in neutrophil activation and recruitment. This
may partially explain the substantial neutrophil
recruitment defect seen in L-selectin-deficient mice
[95], which is more severe than would be expected
from the small contribution of L-selectin to neutro-
phil rolling.

Slow rolling in vivo can be induced by the injection
of TNF-o and requires E-selectin and the engage-
ment of Po integrins [48,40], as blocking both
integrins involved in slow rolling, Mac-1 and LFA-
1, increases leukocyte rolling velocity [20]. In
contrast to the requirement of PSGL-1 for E-
selectin-mediated slow rolling in the autoperfused
flow chamber system, Hlddl(TO and colleagues
showed that the rolling velocity on P- and E- sdoctln
under inflammatory conditions in wvivo is also

dependent on CD44 [35].

CHEMOKINE-INDUCED ARREST

During inflammation, different cell types, including
endothelial cells, leukocytes, platelets and other
cells, produce and release a broad range of chemo-
kines and other chemoattractants. Some of these
proinflammatory mediators circulate in the plasma,
others are only found in the inflammatory tissue,
and yet others are presented on endothelial cells.
The Duffy antigen receptor for chemokines (DARC)
participates in transc_vtosing chemokines from the
tissue to the luminal surfaces of endothelial cells
[63]. DARC has a serpentine structure with seven
transmembrane domains, like other chemokine
receptors, but is not G-protein coupled and has no
known signaling mechanism [069]. It exhibits a
broad specificity, binding members of both CC and
CXC classes of (hemokme [68,93]. Elimination of
DARC by gene targeting leads to a change of the
spatial distribution of chemokines in the tissue [111]
and, in some models, to reduced neutrophil recruit-
ment into the tissue following injury [111,59].
Glycosaminoglycans (GAGs) are also known to

bind and present chemokines [64]. These molecules
are negatively charged polysaccharides and are
thought to bind chemokines by electrostatic inter-
actions [49]. GAG binding is required for efficient
recruitment of leukocytes by chemokines [38].

Binding of chemokines to G-protein-coupled recep-
tors (GPCRs) on neutrophils induces the activation
of intracellular signaling pathways, which activates
integrins almost instantaneously [56,108]. The
activated integrins mediate arrest by binding to
immunoglobulin superfamily members expressed
on endothelial cells [46]. The rapid activation of
integrins downstream of GPCR engagement is
referred to as inside-out signaling.

Neutrophils express four o integrins, where Mac-1
and LFA-1 are most relevant for neutrophil arrest in
the systemic circulation. As presented above, selec-
tins are able to modulate integrin adhesiveness and
mediate slow rolling, while activation of GPCR is a
more rapid mechanism to induce neutrophil arrest.
Engagement of chemokine and other chemoattrac-
tant GPCRs with their respective ligands rapidly
regulates integrin adhesiveness. The adhesiveness
may be 1nﬂuonccd by the regulation of the affinity
and the avidity of the integrin [45,54.58]. An
upregulation of the “affinity’ > is associated with a
conformational change, which increases ligand
binding and decreases ligand dissociation. The
different integrin conformations are associated
with at least three affinity states (e.g., low-, inter-
mediate-, and high-affinity states) [82], but addi-
tional states may exist. Studies on LFA-1 showed
that inside-out signaling by GPCR activation leads
to a conformational change of the integrin with
upregulation of its affinity. The integrin underooes
rearrangement from a bent low- afﬁnl‘rv conforma—
tion to an extended high-affinity (Jonfonnatlom
which is associated with the exposure of the
ligand-binding pocket [58]. Stimulation of neutro-
phils with chemokines only activates a small fraction
of integrins on the surface of the cells [19] and the
regulation is dynamic. The regulation of the integrin
afhmtv is a critical step in chemokme induced arrest

under flow [71].

Only a few steps in the chemokine-induced integrin-
activation pathway in neutrophils are known. Most
studies of GPCR-induced integrin activation were
done in lymphocytes and monocytes. Due to the
differences in chemokine receptor, integrin, and
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signaling molecule expression in these cells, it is
likely that different leukocyte subtypes do not use
the same signaling pathways and molecules. Activa-
tion of GPCR leads to dissociation of the Ga-subunit
from the GBy-complex. The elimination of the Goyo-
subunit in neutrophils leads to an almost complete
loss of chemokine-induced arrest in vivo and in vitro
[108]. The GPy-complex is able to activate phos-
pholipase C (PLC) [14], which in turn, hydrolyzes
phosphatidylinositol 4,5-biphosphate to produce
inositol triphosphate and diacylglycerol. However,
it is not known which B- and y-subunits are involved
in PLC activation. Neutrophils express five different
B-subunits and 12 y-subunits [104]. It was demon-
strated that PLC is involved in chemokine-induced
arrest and oyp; integrin affinity upregulation in a
monocyte-like cell line [37]. The involvement of
PLC in chemokine-induced arrest was also con-
firmed for primary neutrophils [108] (see Table 1).
PLC activity leads to increased 1P3 concentration,
which triggers Ca® " -release from the endoplasmic
reticulum,". whereas diacylglycerol activates some
isoforms of protein kinase C. The GBy-complex can
also activate other molecules including P-Rex-1
[102] and PI3Ky [36], which is not directly involved
in chemokine-induced arrest. PI3Ky-deficient mice
have normal chemokine-induced arrest under flow,
but show a defect in postadhesion strengthening

186].

Two studies in mice and humans convincingly
demonstrated that the guanine nucleotide exchange
factor (GEF) CalDAG-GEFI is involved in chemo-
kine-induced neutrophil arrest [71,8] (see Table 1).
Calcium, diacylglycerol, and perhaps other factors
are required for full activation of CalDAG-GEFL
Activated CalDAG-GEFI can subsequently activate
the small GTPase RAP1/2 that is involved in
chemokine-induced arrest [82,44]. The molecule
that links Rap1 with the integrin in neutrophils is
still unknown. It has been shown in platelets and
other cell types that talinl interacts with the
cytoplasmic tail of the B-chain of integrins and
modulates the conformational change of oyy,Bs3
[101,43.94]. The selective disruption of the talin1
gene in mouse platelets leads to spontaneous he-
morrhage, pathological bleeding, impaired oy,Bs-
mediated platelet aggregation, and By integrin-
mediated platelet adhesion [72,70]. Whether talinl
is also involved in chemokine-induced arrest and/or
selectin-mediated integrin affinity regulation in
neutrophils remains to be seen.
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STABILIZATION OF ADHESION AND FULL
ACTIVATION OF NEUTROPHILS BY OUTSIDE-IN
SIGNALING

Integrin binding to their ligands induces cell adhe-
sion and generates intracellular signals that regulate
cellular functions, including cell motility, phagocy-
tosis, superoxide production, degranulation, prolif-
eration, and apoptosis (i.e., outside-in signaling)
[58]. The conformational changes of integrins
induced by inside-out signaling (e.g., GPCR- and
selectin-signaling) presumably participate and facil-
itate outside-in signaling. The most proximal signal-
ing event during outside-in signaling is thought to be
the activation of the Src family kinases. However, it
is still unknown how these kinases are activated
by integrin engagement. Elimination of the Src
kinases, Hek, Fgr, and Lyn, expressed in neutrophils
abolishes postadhesion strengthening, transmigra-
tion [28], superoxide production, and degranulation
[25; for detailed information, see [7]. The activated
Src kinases phosphorylate the ITAM-containing
adaptor molecules, DAP12 and FcRgamma, which
in turn, recruit and activate spleen tyrosine kinase
(Syk) that subsequently initiates further down-
stream signaling, including respiratory burst [65]
(see Table 1). The pathway shows similarities with
T-cell, B-cell, and Fe-receptor signaling [2].

A defect of postadhesion strengthening was also
found in mice lacking the downstream-signaling
molecules, Wiskott-Aldrich Syndrome (WAS) pro-
tein [113], PI3ky [86], and Vavl and 3 [26].
Elimination of these molecules also affected other
signaling pathways and functional outcome (86,
113, 26; for detailed information, see [9]. These
data suggest that signals exchanged between neu-
trophils and other cells have important conse-
quences for their phenotype. Most likely,
interaction with extracellular matrix proteins in-
duces further signaling. It is known that neutrophils
that have undergone rolling, arrest, adhesion, and
transmigration display a very different phenotype
from blood neutrophils [89].

FURTHER PERSPECTIVE

Our knowledge of how shear stress acts on, and is
transmitted into, neutrophils is very limited. It is
unknown how different signaling pathways interact
with each other. Understanding the different signal-
ing pathways and how they interact may facilitate
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the development of therapeutics that only modulate
the desired function.
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