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Endothelial Cell PECAM-1 Promotes Atherosclerotic
Lesions in Areas of Disturbed Flow in ApoE-Deficient Mice

Brian L. Harry, John M. Sanders, Ryan E. Feaver, Melissa Lansey, Tracy L. Deem,
Alexander Zarbock, Anthony C. Bruce, Andrew W. Pryor, Bradley D. Gelfand, Brett R. Blackman,

Martin A. Schwartz, Klaus Ley

Objective—Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) has recently been shown to form an essential
element of a mechanosensory complex that mediates endothelial responses to fluid shear stress. The aim of this study
was to determine the in vivo role of PECAM-1 in atherosclerosis.

Methods and Results—We crossed C57BL/6 Pecam1�/� mice with apolipoprotein E–deficient (Apoe�/�) mice. On a
Western diet, Pecam1�/�Apoe�/� mice showed reduced atherosclerotic lesion size compared to Apoe�/� mice. Striking
differences were observed in the lesser curvature of the aortic arch, an area of disturbed flow, but not in the descending
thoracic or abdominal aorta. Vascular cell adhesion molecule-1 (VCAM-1) expression, macrophage infiltration, and
endothelial nuclear NF-�B were all reduced in Pecam1�/�Apoe�/� mice. Bone marrow transplantation suggested that
endothelial PECAM-1 is the main determinant of atherosclerosis in the aortic arch, but that hematopoietic PECAM-1
promotes lesions in the abdominal aorta. In vitro data show that siRNA-based knockdown of PECAM-1 attenuates
endothelial NF-�B activity and VCAM-1 expression under conditions of atheroprone flow.

Conclusion—These results indicate that endothelial PECAM-1 contributes to atherosclerotic lesion formation in regions
of disturbed flow by regulating NF-�B–mediated gene expression.(Arterioscler Thromb Vasc Biol. 2008;28:000-000)
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Atherosclerosis is an inflammatory and degenerative dis-
ease of arterial walls characterized by monocyte recruit-

ment, foam cell formation, and complex lesions with smooth
muscle cell proliferation, a necrotic core, cholesterol crystals,
and calcification.1,2 Apolipoprotein E–deficient (Apoe�/�)
mice on a C57BL/6 background develop atherosclerotic
lesions in the aorta and its major branches with a distribution
similar to human atherosclerosis.3 Disease progression can be
accelerated by feeding a Western diet (21% fat).4 Atheroscle-
rosis preferentially develops in regions of disturbed flow (ie,
branch points and bifurcations) that are characterized by
oscillatory and low time-averaged shear stress.5 The local
hemodynamic environment promotes distinct proatheroscle-
rotic (“atheroprone”) or antiatherosclerotic (“atheroprotec-
tive”) endothelial phenotypes.6–10

A minimal complex necessary for the endothelial cell shear
stress response requires platelet endothelial cell adhesion
molecule-1 (PECAM-1, CD31), vascular endothelial cad-
herin (VE-cadherin), and vascular endothelial growth factor
receptor 2 (VEGFR2).11 In this cascade, PECAM-1 senses
force exerted by blood flowing across endothelial cells,

leading to transactivation of endothelial VEGFR2. VEGFR2
triggers conformational activation of integrins followed by
stimulation of nuclear factor of kappa light chain gene
enhancer in B cells (NF-�B), a transcription factor responsi-
ble for expression of inflammatory adhesion molecules,
cytokines, and chemokines. Therefore, we hypothesized that
the PECAM-1–dependent mechanosensory pathway may be
involved in atherogenesis.

PECAM-1 is also expressed on platelets and leukocytes12

and has been implicated in leukocyte transmigration through
endothelial cell monolayers in vitro13 and in vivo.14,15 In a
model of peritonitis, Pecam1�/� mice16 had no defect in
leukocyte transmigration when investigated in the C57BL/6
background,17 the background used in the present study.

Materials and Methods
Mice
Pecam1�/� mice backcrossed 5 times into the C57BL/6 background
(Dr S. Albelda, University of Pennsylvania)18 were crossed 3 times
to C57BL/6 Apoe�/� mice. Double heterozygous offspring were used
to generate Pecam1�/�Apoe�/� mice. Nine Pecam1�/�Apoe�/� and 10
Apoe�/� mice aged 10 weeks were fed a Western diet for 13 weeks
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(Harlan Teklad, TD88137). Pecam1�/�Apoe�/� mice were fertile and
healthy under vivarium conditions. Their blood lipid profile was
indistinguishable from that of Apoe�/� mice (supplemental Table I,
available online at http://atvb.ahajournals.org). Anesthesia (16 �L/g,
1 part atropine sulfate 0.4 mg/mL, 1 part xylazine 20 mg/mL, 2 parts
ketamine 100 mg/mL, and 16 parts 0.9% NaCl) was injected
intraperitoneally before surgeries. Animal experiments and care were
approved by the University of Virginia Animal Care and Use
Committee according to AAALAC guidelines.

Tissue Acquisition
After carotid artery cannulation, the intact circulation of the mouse
was flushed with PBS and perfusion-fixed with 4% paraformalde-
hyde (PFA) in PBS. The aorta was microdissected, immersed in 4%
PFA/PBS for 2 days, cleaned of external fat by blunt dissection, and
processed for en face preparation or paraffin embedding and
sectioning.

En Face Preparation and Measurement of
Atherosclerotic Lesion
Aortas were stained with oil red O and mounted en face.19 Digital
microphotographs of aortas were analyzed for lesion size in specific
regions (supplemental Figure I) by finding percent stained surface
area using ImageJ (NIH).

Bone Marrow Transplantation
Pecam1�/�Apoe�/� mice were lethally irradiated and reconstituted
with Pecam1�/�Apoe�/� or Apoe�/� bone marrow (n�3 recipients for
each).20 Mice began a 16-week Western diet 6 weeks after irradiation.

Histopathology and Immunoperoxidase
Paraffin-embedded aortas were sectioned from aortic valve to
descending thoracic aorta and stained with the Modified Russell-
Movat Pentachrome Method (Armed Forces Institute of Pathology)
or antibodies against Mac2 (clone M3/38, Accurate Chemicals),21

P-selectin (rabbit polyclonal, Dr S. Green, University of Virginia),22

VCAM-1, intercellular adhesion molecule-1 (ICAM-1), CD3, or
CD20 (Santa Cruz Biotech).23,24 Microwave antigen retrieval, Vec-
tastain Elite Kit (Vector Labs), and diaminobenzidine (Dako Corp.)
were used for localization of antigens.23 Sections were counter-
stained with Harris hematoxylin (Richard-Allen Scientific).

En Face Immunofluorescence
Aortic rings 1 to 2 mm thick, with anatomic location and orientation
noted, were each placed in 5 to 10 mL of an antigen retrieval solution
(Antigen Unmasking Solution H-3300, Vector Labs) and processed
per manufacturer instructions. Rings were permeabilized with 0.2%
Triton X-100 for 5 minutes, washed twice with 1% IgG-free BSA
solution, and incubated with Alexa-546–preconjugated (Molecular
Probes A20183) antip65 antibody (1 �g/100 �L, mouse monoclonal
3026, Chemicon) in 1% IgG-free BSA at 4°C with TOTO-3
(Molecular Probes). An Alexa-546–preconjugated IgG3 correspond-
ing to antip65 antibody was used as a control (data not shown). Rings
were washed, opened with the endothelium exposed on a glass slide,
and mounted with antifading mounting gel (GelMount, Fisher).

Immunofluorescence on Cross-Sections
Paraffin-embedded aortic sections were mounted on glass slides,
deparaffinized, rehydrated, processed for antigen retrieval, blocked
with 10% goat or donkey serum in PBS/FSGO, and incubated
overnight at 4°C with Alexa-546-preconjugated antip65 or anti-
VCAM-1 (above), respectively. Donkey antigoat Alexa-546 was
added for VCAM-1 preparations. Sections were stained with
TOTO-3 and mounted with antifading mounting gel.

Confocal Imaging
Images of en face and paraffin-embedded sections were interrogated
for each protein (Nikon C1 confocal microscope). Scales for each

objective lens (20� and 60�) were acquired at the same gain,
aperture, and exposure settings.

Quantification of NF-�B
Intensity of nuclear NF-�B p65 was assessed by importing confocal
images of stained aortic sections into MetaMorph Imaging (Molec-
ular Devices). Average nuclear NF-�B intensity was measured for
each TOTO-3-positive nucleus.

Western Blot
Dermal microvascular endothelial cells were harvested and plated for
48 hours in M199, 10% FBS, 1:250 endothelial cell growth supple-
ment (ECGS, Sigma), and heparin (Sigma). Atheroprone wave-
form25,26 was applied by a cone-and-plate viscometer for 16 hours
with MCDB-131 (Gibco), 2% FBS, 1:1000 ECGS/heparin, and 4%
dextran (Sigma). Samples were collected, run on 10% SDS-PAGE,
transferred to polyvinylidene fluoride (PVDF) membrane, and blot-
ted for phospho-p65 (rabbit polyclonal 3031, Cell Signaling) and
total p65 (rabbit polyclonal 3034).

In Vitro Flow Experiment, siRNA, and Luciferase
Reporter Transfection
Passage two human umbilical vein endothelial cells (HUVECs) were
isolated27 and plated at 50% confluence on 1% gelatin in M199
growth media (Biowhitaker), 10% FBS (Gibco), 5 �g/mL ECGS
(Biomedical Technologies), 10 �g/mL heparin (Sigma), 2 mmol/L
L-glutamine (Gibco), and 100U penicillin/streptomycin (Invitrogen).
HUVECs were treated with 330pmol of control (D-001810, Dhar-
macon) or human PECAM-1 siRNA (L-017029 to 00) and 19.8 �L
oligofectamine (Invitrogen) in 3 mL of OptiMEM-I media for 5
hours. High growth media (20% FBS) was used for 24 hours to grow
to confluence. Cells were infected with 5 MOI adenovirus containing
NF-�B-luciferase reporter (Vector Labs) for 16 hours. Cells were
washed in DPBS and placed in reduced serum media (M199
supplemented with 2% FBS, 5 �g/mL ECGS, 10 �g/mL heparin,
2 mmol/L L-glutamine, 100U penicillin/streptomycin, and 2% dex-
tran by weight to increase viscosity). Atheroprone or atheroprotec-
tive shear stress was applied for 24 hours using a cone-and-plate
viscometer.28 Samples were collected in passive lysis buffer (Pro-
mega) for measurement of luciferase luminescence or SDS-MAPK
sample buffer (Cell Signaling) for Western blot of human PECAM-1
and VCAM-1 (R&D Systems).

Statistics
Data are represented as mean�SEM and analyzed using a 2-tailed
heteroscedastic Student t test or nonparametric Wilcoxon–Mann test.
P�0.05 was considered significant.

Results
En Face Analysis of Atherosclerotic Lesions
We measured atherosclerotic lesion formation in specific aortic
regions (supplemental Figure I) from Pecam1�/�Apoe�/� and
matched Apoe�/� mice on Western diet for 13 weeks. Oil red
O staining revealed robust lesions at branch points of major
and minor arteries from both groups and along the lesser
curvature of the aortic arch of Apoe�/� mice (Figure 1A).
Lesion size was reduced in Pecam1�/�Apoe�/� mice by 26%
in whole aortas (P�0.05), 28% in aortic arches (P�0.02),
and 42% in lesser curvatures (P�0.005). Differences in the
thoracic and abdominal aortas were not significant (Figure
1B). These findings suggest that PECAM-1 promotes athero-
sclerotic lesion development in a flow-dependent manner.

Bone Marrow Transplantation
To test whether PECAM-1 on endothelial or hematopoietic cells
determines atherosclerotic lesion formation, Pecam1�/�Apoe�/�
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mice were lethally irradiated, reconstituted with either
Apoe�/� or Pecam1�/�Apoe�/� bone marrow, and fed a West-
ern diet for 16 weeks. Pecam1�/�Apoe�/� mice reconstituted
with Apoe�/� bone marrow developed more than twice as
much lesion in the abdominal aorta compared to mice
receiving Pecam1�/�Apoe�/� bone marrow (129% increase,
P�0.05, supplemental Figure II). This suggests that
PECAM-1 on leukocytes and platelets promotes atheroscle-
rosis in the abdominal aorta. Differences in the aortic arch
were not significant between mice receiving Apoe�/�

(22�1%) and Pecam1�/�Apoe�/� bone marrow (25�3%,
supplemental Figure II), suggesting that endothelial
PECAM-1 determines atherosclerotic lesions in the aortic
arch, an area of disturbed flow.

Involvement of NF-�B Activation
To investigate the mechanism by which PECAM-1 promotes
atherosclerosis at sites of disturbed flow, we stained aortas en
face for NF-�B p65. Endothelial cells lining the lesser
curvature of Apoe�/� but not Pecam1�/�Apoe�/� mice dem-
onstrated robust nuclear p65 localization (Figure 2A). This
suggests that PECAM-1 absence reduces nuclear NF-�B. We
also compared p65-stained aortic arch cross-sections from
Apoe�/� and Pecam1�/�Apoe�/� mice (Figure 2B). Pecam1�/

�Apoe�/� mice demonstrated a 77% and 59% reduction in
NF-�B staining in the lesser and greater curvatures, respec-
tively, compared to Apoe�/� controls (P�0.01, Figure 2C).

To determine whether regional flow patterns affect
PECAM-1 regulation of NF-�B activity, we cultured human
umbilical vein endothelial cells (HUVECs) under athero-

prone or atheroprotective flow patterns derived from the
human circulation25 or static conditions. Atheroprone flow
increased VCAM-1 expression, which was reduced by siRNA
targeting PECAM-1 (Figure 3A). NF-�B activity measured
using a luciferase reporter increased 3.6-fold in HUVECs
treated with control siRNA under atheroprone compared to
atheroprotective flow (P�0.001, Figure 3B). NF-�B activity
under atheroprone flow decreased by nearly 50% after
siRNA-based PECAM-1 knockdown to 20�13% of control
levels (P�0.001). siRNA treatment did not alter NF-�B
activity under static conditions or atheroprotective flow.
PECAM-1 knockdown also attenuated the VCAM-1 protein
expression under atheroprone flow (P�0.001, supplemental
Figure III). Collectively, these data indicate that PECAM-1 is
necessary for NF-�B activation and VCAM-1 expression
under atheroprone flow.

Cross-Sectional Analysis of Atherosclerotic Lesions
We serially sectioned the entire aortic arch from aortic valve
to descending thoracic aorta (Figure 4A). Foam cell-
containing and complex lesions were seen in the aortic root of
Apoe�/� and Pecam1�/�Apoe�/� mice (supplemental Figure
IV). Lesions of the lesser curvature were strikingly absent or
diminished in thickness and size in Pecam1�/�Apoe�/� mice
(Figure 4B). VCAM-1 was expressed in atherosclerotic
endothelial and smooth muscle cells of Apoe�/� mice,29,30 but
this was visibly reduced in Pecam1�/�Apoe�/� mice (Figure
4C). Pecam1�/�Apoe�/� mice expressed VCAM-1 on 19�5%
of the endothelial circumference of aortic cross-sections
compared to 51�6% in Apoe�/� mice (n�13 to 15 cross-
sections, 3 mice per group). This difference was significant in
the ascending aorta (P�0.05) but much less pronounced in
the more distal segments of the aortic arch and the descending
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Figure 1. PECAM-1 promotes atherosclerosis in regions of dis-
turbed flow. A, Representative oil red O–stained aortas from
Apoe�/� and Pecam1�/�Apoe�/� mice. B, Pecam1�/�Apoe�/�

mice (2 females, 5 males) develop less lesion than Apoe�/� mice
(1 female, 7 males) on the whole aorta, aortic arch, and lesser
curvature, but not the thoracic and abdominal aorta.

Figure 2. Nuclear NF-�B trans-
location is PECAM-1–depen-
dent. A, En face aortic arches
stained for NF-�B p65 and
TOTO-3 (nuclear stain). B, Aortic
arch cross-sections stained for
NF-�B p65 and TOTO-3. C,
Quantification of nuclear NF-�B
staining in the lesser and
greater curvatures (n�44 to 84
nuclei, 11 sections, 2 mice per
group, *P�0.01).

Figure 3. PECAM-1–dependent activation of NF-�B under
atheroprone shear stress. Ad-NF-� B-Luc–transfected endotheli-
al cells cotransfected with control siRNA (siControl) or siRNA to
PECAM-1 (siPECAM-1) were exposed to static conditions,
atheroprone (“prone”) flow, and atheroprotective (“protective”)
flow. A, siPECAM-1 attenuates PECAM-1 and VCAM-1 expres-
sion. B, NF-�B activity increases under atheroprone flow in the
presence of PECAM-1. (*P�0.001 vs atheroprone siControl,
**P�0.001 vs atheroprone siPECAM-1, n�5).
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aorta (data not shown). VCAM-1 is relatively specific for
supporting the adhesion of mononuclear leukocytes. Its ex-
pression correlates well with the occurrence of atherosclerotic
lesions.31

Macrophage presence by Mac2 staining was also dramat-
ically reduced in Pecam1�/�Apoe�/� mice (supplemental Fig-
ure V). Foam cells were present on 41�1% of the endothelial
circumference of Movat-stained aortic cross-sections in
Apoe�/� mice compared to 10�1% in Pecam1�/�Apoe�/� mice
(P�0.00001, n�18 to 19 cross-sections, 3 mice per group).
Maximum thickness of foam cell regions reached 116�4 �m in
Apoe�/� mice, but only 45�3 �m in Pecam1�/�Apoe�/� mice
(P�0.0003). Differences in ICAM-1, P-selectin, (supplemental
Figure V), T cells (CD3) and B cells (CD20, data not shown)
were not observed.

Discussion
Endothelial cells have long been known to respond to
steady32,33 and transient shear stress.34,35 The latter has been
hypothesized to determine the localization of atherosclerotic
lesions in vivo.36 PECAM-1 plays a key role in the flow-
dependent mechanotransduction events leading to atheroscle-
rosis,11 but this was not found in all experimental systems37

and has not been directly investigated in vivo. Oscillatory or
low time-averaged shear stress promotes the development of
atherosclerotic lesions, whereas areas with high shear stress
are protected.38 Cheng et al manipulated the shear stress
pattern using a circumferential cuff,38 which also alters local
blood pressure and may disturb the adventitia, an area that
contains inflammatory cells and participates in the process of
atherosclerosis.24 The data from Pecam1�/�Apoe�/� mice
described here suggest that PECAM-1 on the endothelium is
critically important for atherosclerotic lesion development in
the aortic arch of Apoe�/� mice. This may be attributable to
the involvement of PECAM-1 in the mechanosensory complex
containing PECAM-1–VE-cadherin–VEGFR2.11,39 Our data
suggest that causative factors for atherosclerotic lesion develop-
ment may vary for different locations in the vasculature.

Several possible explanations may account for residual
atherosclerotic lesions in Pecam1�/�Apoe�/� mice. First, al-
though shear stress–induced phosphatidylinositol-3-OH ki-
nase p85 and AKT phosphorylation were completely absent
in Pecam1�/� endothelial cells, shear stress applied to Pe-
cam1�/� endothelial cells activated �V�3 integrin to a small

extent.11 Second, other unidentified mechanisms in addition
to the PECAM-1 pathway may exist for sensing shear stress.
Third, rheological factors such as increased residence time of
monocytes and inflammatory cytokines at atheroprone sites
may promote atherosclerosis.40,41 Fourth, prolonged perme-
ability of inflamed endothelium in Pecam1�/� mice42 may
enhance monocyte recruitment and the action of inflamma-
tory factors. Finally, PECAM-1 may prime the endothelium
in response to atheroprone flow, but its impact may diminish
over time as other factors contribute.43

PECAM-1 regulates transendothelial migration of mono-
cytes44 and neutrophils.13 In a model of acute lung inflam-
mation, the importance of PECAM-1 for neutrophil recruit-
ment was demonstrated in vivo.15 Intravital microscopy
showed that PECAM-1–specific antibody hampered leuko-
cyte movement across the basement membrane but not
transendothelial migration.45,46 However, the role of
PECAM-1 in transendothelial migration depends on the
mouse strain, because C57BL/6 mice showed no discernible
defect in two models of inflammation.17 Because we inves-
tigated Apoe�/� mice on a C57BL/6 background, it is unlikely
that PECAM-1 absence significantly curbed atherosclerosis
by inhibiting transmigration.

Bone marrow transplantation experiments performed here
demonstrate that PECAM-1 expressed on leukocytes or
platelets promotes atherosclerosis in the abdominal aorta, but
not the aortic arch, even in the absence of PECAM-1 on the
endothelium. This suggests a putative role for either ho-
mophilic binding between leukocyte and platelet PECAM-1
via immunoglobulin-like domain 1 or heterophilic binding
via immunoglobulin-like domains 1, 2, and 6.44 As one
possible mechanism, elevated very low density lipoprotein
leads to increased human endothelial expression of CD38,47

which may be a PECAM-1 ligand.48

The present findings show that the net effect of removing
Pecam1 from the mouse genome is atheroprotective in
regions of the aorta exposed to atheroprone flow patterns. We
believe dynamic fluid shear stress generates tension between
adjacent endothelial cells and activates PECAM-1, which
leads to nuclear translocation of NF-� B and expression of
inflammatory and adhesive mediators, such as VCAM-1, that
promote atherosclerosis. NF-�B regulation by PECAM-1
might depend on the underlying extracellular matrix on which
the endothelial cells are sitting. Indeed, endothelial cells on
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fibronectin-rich, but not collagen-rich, matrices activate
NF-�B in response to atheroprone flow.49

PECAM-1 may also regulate atherosclerosis by mecha-
nisms not investigated here. Pecam1�/� mice have increased
bleeding times,50 and altered hemostatic function may reduce
atherosclerosis. Shear stress sensing is also involved in
regulating nitric oxide production,51,52 preventing apoptosis,
and maintaining anticoagulant properties, which might be
affected following knockout of the Pecam1 gene.

Polymorphisms in the human PECAM1 gene correlate with
the incidence of coronary atherosclerosis,53 coronary artery
disease,54 and myocardial infarction.55 A 53G�A poly-
morphism in the 5� untranslated region of PECAM1 reduced
shear stress response in vitro. Compared with 53G homozy-
gotes, carriers of the 53A allele showed less focal progression
of disease of coronary atherosclerosis in the LOCAT study
and a similar trend in diffuse progression of disease in the
REGRESS study.53 Another study reports that a 373C�G
polymorphism, which may affect homophilic interactions of
PECAM-1 via a Leu125Val exchange in the first
immunoglobulin-like domain,56 is associated with coronary
artery disease in Asian Indians.55 Polymorphisms in the sixth
immunoglobulin-like domain (Asn563Ser), which is impor-
tant for heterophilic interactions with integrins,57 and the
cytoplasmic domain (Gly670Arg), which participates in sig-
nal transduction,58 have been recognized as risk factors for
myocardial infarction in the Japanese.55

In conclusion, the present data identify the PECAM-1–
dependent endothelial shear stress response as a key factor in
atherosclerotic lesion development in the aortic arch of the
Apoe�/� mouse, a model that shares many similarities with the
human disease.
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