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complex biological samples. The number of replicates is often limited because of the high cost of

experiments and the limited supply of samples. Traditionally, a simple fold change cutoff is used,

which results in a high rate of false positives. Standard statistical methods such as the two-sample t-

test are unreliable and severely underpowered due to high variability in LC-MS/MS data, especially

when only a small number of replicates are available. Using an advanced error pooling technique,

we propose a novel statistical method that can reliably identify differentially expressed proteins

while maintaining a high sensitivity, particularly with a small number of replicates. The proposed

method was applied both to an extensive simulation study and a proteomics comparison between

microparticles (MPs) generated from platelet (platelet MPs) and MPs isolated from plasma (plasma

MPs). In these studies, we show a significant improvement of our statistical analysis in the identi-

fication of proteins that are differentially expressed but not detected by other statistical methods. In

particular, several important proteins — two peptides for B-globin and three peptides for von Will-

ebrand Factor (VWF) — were identified with very small false discovery rates (FDRs) by our method,

while none was significant when other conventional methods were used. These proteins have been

reported with their important roles in microparticles in human blood cells: vWF is a platelet and

endothelial cell product that binds to P-selectin, GP1b, and GP IIb/IIIa, and B-globin is one of the

peptides of hemoglobin involved in the transportation of oxygen by red blood cells.
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1 Introduction

One of the critical demands in current proteomic research is
the comparison of two or more complex samples in order to
determine which proteins are differentially expressed. While
such investigations were initially performed with no peptide
labeling, many recent studies differentially label either pro-
teins or peptides with isotope labels, combine the samples,
and then perform LC-MS/MS analysis on the mixture. A
growing number of isotope labels have been employed in
recent years, including isotope-coded affinity tag (ICAT),
isobaric tags for relative and absolute quantification
(iTRAQ), and stable isotope labeling with amino acids in cell
culture (SILAC) [1]. Quantification of individual peptides is
then obtained from the relative ion intensities of the corre-
sponding pair of isotope peaks by standard MS/MS analysis
[2]. This approach greatly reduces the variations in MS data
by comparing two different samples within the same analy-
sis for more reliable relative quantification [3]. However, the
expression intensities of individual peptides are often highly
correlated between the pair-labeled MS data outputs from
each MS experimental and instrumentation setting. There-
fore, it is important to utilize statistical analysis methods that
can directly consider such a correlated structure of pair-
labeled LC-MS/MS data for rigorous discovery of differen-
tially expressed peptides.

Currently, after obtaining individual intensity values or
ratios on relative intensities of LC-MS/MS data, simple and
traditional approaches such as fold change discovery and
paired t-tests are often used to determine which peptides and
proteins are differentially expressed. Since the fold change
method uses only the ratios of signal intensities from two
samples, it cannot provide rigorous evaluation of statistical
significance on identified differentially expressed proteins
and is often subject to high false-positive and false-negative
error rates. A large number of false positives will be selected
for peptides detected at low intensity levels where the S/N is
high. On the other hand, many significant changes of high-
intensity peptides (with relatively small fold changes) will be
missed by simply employing a fold-change cutoff criterion.
Conventional statistical methods such as two-sample or
paired t-tests are derived from the signal intensity differ-
ences divided by the error variability estimates that are
obtained based on each individual protein’s intensity values
in replicated experiments and samples. For example, statis-
tical analysis was conducted using the two-sample t-test to
examine differential expression in LC-MS/MS data of the
paired nipple aspirate fluid samples from 18 women from
tumor-bearing and contralateral disease-free breasts of
patients with unilateral early-stage breast cancer, which were
differentially labeled with ICAT reagent [2]. While this
approach can provide statistical significance of differential
expression of MS data, these statistics are often unreliable
and severely underpowered because the error estimates are
inaccurate, especially when there are a small number of
replicates, e.g., duplicate or triplicates [11].

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proteomics 2007, 7, 0000-0000

Other statistical methods have also been employed in
proteomic data analysis. An unsupervised learning tech-
nique was used to cluster spectra with LC-MS/MS data [4]
and the analysis of variance (ANOVA) was used to examine
the dependence of samples on proteins using 2-DE data [5].
Various supervised techniques have been used to analyze
MALDI-TOF MS data [6-10]. While these methods allow
statistical evaluation on the differential expressions of thou-
sands of candidate peptides, they have been found to be still
underpowered for the MS data analysis with a small number
of replicates.

The local pooled error (LPE) test is specifically designed
to strengthen statistical power originally in the analysis of
small sample microarray data [11]. This approach has also
been successfully applied to another proteomics study in de-
termining the differences between plasma control and dis-
ease samples by parallel analysis of unlabeled protein sam-
ples analyzed by triplicate LC-MS/MS data [12]. In our cur-
rent study, explicitly considering the correlative
characteristics of pair-labeled MS data, we further refine the
concept of the LPE method and introduce a weighted pooled
test, L,, for the analysis of paired isotope-labeled samples. We
first compare L, with the alternative statistical approaches by
an extensive simulation study. We then use it to compare
proteome of platelet microparticles (MPs) and plasma MPs
to discover several novel protein biomarkers that were dif-
ferentially expressed between the two MP proteomes.

2 Materials and methods
2.1 Paired L-statistic

The paired t-test can be a powerful statistical method for
identification of differentially-expressed proteins in LC-MS/
MS data when normality is assumed and a good number of
replicates, e.g., >10 are obtained. The paired t-test can be
summarized as follows. Suppose x;; and y; are (a peptide’s)
ion intensities for two conditions x and y, where replicates
i=1,2,... nand peptides (or proteins) j=1, 2, ..., m. Note
that prior to analysis the data may be log,-transformed in
order to remedy the highly right-skewed distribution of pro-
tein intensity values [13]. Then for each protein j, the paired t-
test statistic is:
d
f= N

(/n)

v;fhere dij = (xg —¥) di = Z.i (?cij - Yii) / n, and
s = Zi (dij — dij)"/(n — 1). The statistical significance of
each protein can then be obtained from the observed t-sta-
tistics of which the p-value is often adjusted for multiple
comparisons [14, 15]. Note that the sample variance s is
derived based only on the replicated observations of peptide j,
which can be considerably variable and inaccurate with a
small sample size. Due to this, the paired #-test is often
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underpowered and unreliable when data is lowly replicated.
Thus, we modify the paired t-test and propose the so-called L-
statistic in order to more reliably identify differentially
expressed peptides from pair-labeled LC-MS/MS data. Simi-
lar to the paired t-test, our L-statistic is defined as:

where 8, is the median of paired differences [(x; — y;), i=1,
2, ..., n], which reduces the effect of outliers. Borrowing the
error information of adjacent-intensity proteins, variance
(t/) is estimated based on LPE estimates in the following
manner. Evaluate the ranks of (x;) and (y;). If the rank of x; is
more than an a-percent, e.g., 5% away from the rank of y;,
the pair (x;;, y;) will be excluded from the following calcula-
tion of the baseline error distribution (they are considered as
potentially differentially expressed peptides).

(i) Let M;=x; — y; and A; = (x; + y;)/2 be the differ-
ence and average of x; and y;;, respectively. Compute each
pooled sample variance of M on each of the predetermined
quantiles of A, e.g., 100 1% quantile intervals (g = 0.01).

(ii) Obtain the baseline error distribution by applying a
nonparametric smoothing spline technique to the above
pooled sample variances.

This three-step estimation of LPE is used to avoid inac-
curate error estimates in high intensity regions where a
direct nonparametric estimation based on fixed-width win-
dows often results in poor error estimation due to sparse
observations. Once such a baseline error distribution is
obtained, an estimate of the variance of each protein, 1/ can
then be extrapolated from this distribution corresponding to
the mean of Ay;, Ay, ..., A,

By pooling information from other proteins with similar
expression levels, this algorithm should provide reliable esti-
mates of baseline variances with limited replication [11]. To
determine a threshold of L-statistics for statistical significance
false discovery rates (FDRs) can be used as described later.

2.2 Paired L, -statistic

The variance estimate for the above L-statistic is based solely
on the pooled error variance of adjacent intensity proteins.
While the LPE estimate has a shrinkage effect toward the
mean of (local) error variances, this effect is not sensitive
enough to capture the innate biological variability of individ-
ual proteins among different biological subjects. Thus, in
order to optimize the error estimates between individual and
LPEs, we introduce the L,-statistic which uses a weighted
variance estimate between the two variance estimates. That
is, the L,-statistic on the paired LC-MS/MS data with a
weight, w, is defined as:

5
Ly = j
\/((1 —w)t + wsf/n)
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where 0<w<1 is the weight parameter between individual
variance estimates or pooling variance estimates. For exam-
ple, if w becomes smaller, the L-statistic relies more on in-
dividual variances while it relies more on pooling variances if
w becomes larger. Both variances contribute equally if
w=05and L,=Lifw=0.

The weight can be set to 0.5 if no information is available.
However, to be more objective, we propose two approaches to
estimate the weight. The first uses the randomness of statis-
tics over any intensity level as follows; choose w such that
min,, {{b;]: L,j=by + b;A}, where by and b, are estimates
obtained by regressing A; on L, This approach is based on
the assumption that differentially expressed peptides are
distributed equally in high and low expression intensity
levels. The second approach minimizes L, -statistics of insig-
nificant peptides as follows, choose w such that min,
ZJ-E,|LWJ, where | is a set of insignificant peptides selected by
the rank-invariance rule. This rule selects peptides with large
rank differences of expression values between two condi-
tions. In practice, we select 50% of rank-invariant peptides
and evaluate them for w=0, 0.01, 0.02, .. ., 0.99, 1.

2.3 Statistical significance by FDR

Raw p-values corresponding to the above L- or L,-statistics
can be obtained for all observed proteins if an underlying
data distribution is assumed to be well-behaved, e.g., a Gaus-
sian distribution. However, this kind of distributional
assumption may not be warranted in the ICAT-labeled LC-
MS/MS data. In addition, an adjustment of statistical signif-
icance is required to take into account a large number of
candidate proteins in terms of testing multiple hypothesis
comparisons. For this, we control the FDR to determine a
threshold of L- or L,-statistics based on a rank-invariant
resampling technique as follows:

(i) Order expression values of all replicates and peptides
by the mean of x;; and y; and divide them into g quantiles
(e.g» q=0.01). Note that pairs for each peptide should be
maintained.

(i) In each quantile, compute ranks of expression values
and their differences within each condition, i.e., rank (x;) —
rank (y;).

(iii) In each quantile, retain replicates having their rank
differences less than the median of rank differences, and
randomly sample from the remaining pairs to make a null
data set with the same size (m proteins by n replicates) as the
raw data.

(iv) Repeat the above procedure independently many
times (e.g., B =100).

Using the resampled null data sets, we estimate FDR in
the following manner. Suppose L-statistics and [’-statistics
are computed from the raw data and the resampled null data
sets of size B. Given a critical value A, the estimate of FDR is
defined as:

FDR(A) = mo() R(A)/R(A)
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where RO(A) = #{1%|1°>A, i=1,..., G, b=1,...,B}/B
is the average number of differentially expressed peptides in
the null data and R(A)=#{L|L;> A, i=1, ..., G} is the
number of significant peptides in the raw data. The estimate
of a correction factor with the A-quantile m, of L%, is
(M) = #{L| Li<m, } /#{L%|L°,<m,} which is required be-
cause of the different numbers of true null peptides in the
raw data and the null data.

2.4 Simulation data

To investigate the performance of the proposed method, we
conducted an extensive simulation study. Since the results of
the simulation study rely heavily on the simulation settings,
we have tried to assimilate real LC-MS/MS with the follow-
ing two approaches: case-based and model-based.

2.4.1 Case-based approach

To generate simulated data with individual variations in
addition to heterogeneous baseline variations, we utilized a
real LC-MS data set. The means and variances within parti-
tioned intervals of intensity levels were thus computed using
the real data set described below, and LOWESS (locally
weighted scatterplot smoothing) [16] was used to fit the var-
iances against the means. In order to see the effects of dif-
ferent data sets, we used several different sets in our prelim-
inary study, and found that this did not have a significant
effect on our overall results (data not shown). The LOWESS
line shows an overall decreasing trend (Fig. 1a). Assuming
this LOWESS fit represents the true relationship between the
mean and variance, we generated simulated data with three
replicates from x; ~ N(u;, 6,7) + g;and y; ~ N(vj, 6,7) + &;
where yi; was randomly taken among the proteins in the real
datafori=1,2,3andj=1,2,...,1000, while v; = ; forj =1,
2,...,500and v; = p; + Cforj =501, 502, ..., 1000. The error
term g;; is generated from N(0, 1) and is added to both x;; and
¥ij so x and y have a correlation within each pair i. The con-
stant C is +1 or -1 for a two-fold change and +2 or —2 for a
four-fold change because the data are assumed to be log,-
transformed, i.e., log,(2) =1 and log,(4) =2. The corre-
sponding variances are obtained from the LOWESS line.

2.4.2 Model-based approach

The number of quantified proteins is typically small (e.g., less
than 200) because the current quantification of such data is
typically performed manually. Therefore, even though the
above case-based approach could provide simulated data very
close to the actual ICAT-labeled LC-MS/MS data, the follow-
ing mathematical model was also used to generate simulated
data with a finer resolution: fin)=-0.001n + 1.1, where
n=0.1,0.2,...,9.90, 10.0, closely assimilating the nonlinear
decreasing relationship between true mean and variance
(Fig. 1b). We generated simulated data with 1000 proteins

and three replicates from x;; ~ N(w;, 5,,7) + &;and y; ~ N(v;
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Figure 1. Mean-variance plots for generating simulated data: (A)
case-based approach and (B) model-based approach. Simulated
data are generated using the assumed relationship of means and
variances, i.e., a mean is randomly selected and its correspond-
ing variance is selected; this procedure is repeated independent-
ly.

ijz) + & where p; is randomly taken from the n values for
i=1,2,3andj=1,2,..., 1000, while v;=p;forj=1,2, ...,
500 and v; = ; + C for j = 501, 502, ..., 1000. The error term
g;and C were determined as in the case-based approach. The
corresponding  variances are obtained from the
above function, ie, o,7=flu)=-0.001y + 1.1 and
o, = flv) = —0.001v; + 1.1.

2.5 LC-MS/MS proteomics data for human plasma-
and platelet-IMIPs

Platelets were isolated and platelet MPs were generated and
isolated as previously described [17]. Briefly, human blood
was collected by venipuncture into 1/10 volume of an acid-
citrate-dextrose (85 mM trisodium citrate, 83 mM dextrose,
and 21 mM citric acid) solution. Platelet-rich plasma (PRP)
was obtained by centrifugation at 110 x g for 15 min. Plate-
lets were pelleted by centrifugation at 710 x g for 15 min and
the supernatant, platelet-poor plasma (PPP), was retained for
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isolation of plasma MPs (see below). The platelet pellet was
washed three times, resuspended in 10 mL of Tyrode’s buf-
fer, and centrifuged one additional time at 110 x g to remove
remaining red blood cells and dead cells. To generate plate-
let-derived MPs, ADP (10 pM final concentration) was added
to the platelet suspension for 10 min. Platelets were removed
by centrifugation (710 x g for 15 min) and platelet-derived
MPs were pelleted by centrifugation at 150 000 x g for 90 min
at 10°C.

Plasma-derived MPs were isolated by gel filtration chro-
matography followed by ultracentrifugation as previously
described [18]. Briefly, PPP was centrifuged twice to remove
residual cells and cell debris at 710 x g and 25°C for 15 min.
This plasma was then applied to a Sephacryl® S-500 HR (GE
Healthcare, Piscataway, NJ) gel filtration column and MP-
containing fractions were concentrated by ultracentrifugation
at 150 000 x gfor 90 min at 10°C. Platelet- and plasma-derived
MPs were resuspended in a minimal volume of PBS (phos-
phate-buffered saline, pH 7.4) and a small aliquot was taken
for protein analysis using the Micro BCA Protein Assay
(Pierce Biotechnology, Rockford, IL). Solutions containing
equivalent protein amounts of paired samples (plasma MP
and platelet-derived MP) were lyophilized and resuspended in
a 1% SDS denaturing buffer from the ICAT labeling kit
(Applied Biosystems, Foster City, CA). Samples were labeled
and processed as instructed with the following modifications.
The initial labeling reaction was performed at half the recom-
mended volume, protein amount, and ICAT reagent because
of the low amount of protein obtained from each plasma MP
preparation. The differentially-labeled proteins were mixed,
and electrophoresed approximately 1 cm into a 7.5% acryl-
amide SDS-PAGE using a Minigel system (BioRad, Hercules,
CA) at 150 V. The acrylamide gel section containing the pro-
teins was cut out as a single lane, extracted, enriched for bio-
tin-containing peptides, and the biotin tag was cleaved as
instructed. The samples were lyophilized and reconstituted to
20 pL with 0.1% acetic acid for MS analysis. This procedure
was repeated three times with plasma MPs labeled with the
light ICAT reagent for two of these samples and labeled with
the heavy ICAT reagent in the third.

Samples were loaded onto a 360 pm odx 75 um id
microcapillary fused-silica precolumn packed with irregular
5-20 pm C18 resin. After sample loading, the precolumn was
washed with 0.1% acetic acid for 15 min to remove any buffer
salts or gel contaminants. The precolumn was then connected
to a 360 pm od x 50 um id analytical column packed with
regular 5 um C18 resin constructed with an integrated elec-
trospray emitter tip. Samples were gradient eluted at a flow
rate of 60 nL/min with an 1100 series binary HPLC solvent
delivery system (Agilent, Palo Alto, CA) directly through an
ESI source interfaced to a Finnigan LTQ mass spectrometer
(Thermo Electron, San Jose, CA). The HPLC gradient used
was initially 100% A, 5% B at 5 min, 50% B at 220 min, 100%
B at 240 min, and restored to 100% A at 280 min (solvent
A =0.1 M acetic acid, solvent B = 70% acetonitrile in 0.1 M
acetic acid). The LTQ mass spectrometer was operated in the
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data-dependent mode in which an initial MS first scan
recorded the mass to charge (m,/z) ratios of ions over the mass
range 300-2000 Da, and then the ten most abundant ions
were automatically selected for subsequent collisionally acti-
vated dissociation and an MS/MS spectrum recorded. Al MS/
MS data were searched against a human protein database
downloaded from the NCBI (www. ncbi.nlm.nih.gov) on Aug
24, 2004 using the SEQUEST® program (Thermo Electron).
For ICAT-labeled peptides, a static modification of 227.127
was used for the light isotope label and an additional 9 Da for
the heavy ICAT-labeled peptides. Peptide identifications were
made based on fully tryptic peptides, using a first-pass filter-
ing of standard criteria as previously described [19], including
crosscorrelation values >2.0 (+1 charge), 2.2 (+2 charge),
and 3.5 (+3 charge). Protein assignments required at least
two MS/MS spectra matches that passed the above criteria.
Manual validation of at least one MS/MS spectrum—peptide
sequence match per protein was performed for all proteins
that were determined to be differentially expressed.

Ion intensity of peptides was determined using MSight®,
freely available from the Swiss Institute of Bioinformatics
(www.expasy.org/Msight) [20]. The experiment was con-
ducted using three different samples and 94 peptides from
27 unique proteins were manually quantified.

3 Results
3.1 Analysis of simulated data

We compared our proposed methods with the paired t-test,
the most powerful (unbiased) statistical approach under the
normality assumption and the most closely comparable to
our approach. Other methods, such as the two-sample t-test
and fold-change discoveries, were found to perform very
poorly for this kind of paired LC-MS/MS data analysis with-
out considering a high correlation between the paired sam-
ples of which results are not shown here.

3.1.1 Case-based simulated data

The performance of the paired t-test, L-test, and L s-test is
shown with the receiver operating characteristics (ROC)
curves for the case-based simulated data in Fig. 2a and b. The
paired L-test and Ls-test significantly outperformed the
paired t-test when the number of replicates was two or three
(e.g., with FPR = 0.05 and n = 2, paired t-test has a power less
than 0.2 compared to power >0.75 of L, s-test); however, the
difference between the two tests became smaller with more
replicates and there was no significant difference with five or
more replicates. The results for the simulated data with four-
fold changes were similar to those of the two-fold change
cases. Note that L-test and L s-test performed very similarly
in these cases — almost identical in the four-fold change cases
(Fig. 2b) since their error estimates were very similar under
this simulation setting. However, Ls-test would out-
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Figure 2. ROC curves for simu-
lated data with n=2, 3, 4, or 5
replicates. The dotted lines (—
and ---) represent the paired L-
and Lgs-tests, respectively, the
solid line represents the paired
t-test; (A) case-based simulated
data with two-fold change, (B)
case-based simulated data with
four-fold change, (C) model-
based simulated data with two-
fold change, and (D) model-
based simulated data with four-
fold change.

www.proteomics-journal.com



8 H. Cho et al.

perform L-test if more heterogeneous errors exist among the
proteins with similar expression intensities from e.g., differ-
ent biological replicates.

Table 1a shows the averaged areas under the ROC curve
(AUCs) of 100 simulations for the various tests applied to the
case-based simulated data with two- or four-fold changes.
When the data with two-fold changes were analyzed using a
small number of replicates, results from the paired L- and
Ly s-test were better whereas the differences between L (or L)
tests and paired t-tests were negligible with five or more
replicates. Thus the paired L-test and L5 test would be safe
to use in both cases. The table also shows AUCs for the
paired L,-tests with estimated weights. Using the L,-test with
the weight estimated by minimizing L-statistics of rank-
invariant proteins yielded better results than those obtained
when the weight was estimated at random. Further, the test
yielded results greater than or equal to those obtained using
the paired L-test. When differentially expressed proteins had
four-fold changes, all tests, as expected, performed con-
sistently better than when done with two-fold changes. The
comparison results among the tests with four-fold changes
could be interpreted with two-fold changes.

3.1.2 Model-based simulated data
Figures 2c and d display the ROC curves for the paired t-

test, L-test, and Lys-test applied to the simulated data gen-
erated from the mathematical model with the finer resolu-

Proteomics 2007, 7, 0000-0000

tion as shown in Fig. 1b. We found that as in the case-based
simulated data, the paired L-test showed better results than
the paired t-test with small sample sizes. For example, the
paired t-test has a power <0.2 compared to L, s-test’'s power
>0.9 with n =2 and FPR = 0.05. These differences became
smaller when larger sample sizes were used. Furthermore,
when the number of replicates is equal to or greater than
five, the results obtained using a paired t-test are slightly
better than those obtained using the paired L-test for the
simulated data with two-fold changes. In these cases, there
was not much difference between results obtained using the
paired L-test and L,-test (with min L) because the optimal
weight (w) for the data was estimated close to zero. Table 1b
summarizes the averaged areas under the ROC curve
(AUCs) of 100 simulations for the various tests applied to
the model-based simulated data with two- or four-fold
changes.

3.2 Analysis of human plasma and platelet MPs data

The paired LC-MS/MS data for human plasma MPs consist
of three replicates for 94 peptides (27 proteins). Each repli-
cate represents ion abundances for a pair of plasma and pla-
telet MPs. The paired data with a small number of replicates
(e.g., n = 3) were analyzed using our proposed method, com-
pared with the fold change and the paired t-test approaches.
In computing fold changes, raw fold changes were adjusted
to generate an overall value of 0.00 in the log, scale, exclud-

Table 1a. The area under the ROC curve (AUC) generated by each method for the case-based simulated data with two- or four-fold changes

and n=2, 3, 4,5, or 10 replicates

Method (paired) Two-fold changes

Four-fold changes

n=2 n=3 n=4 n=>5 n=10 n=2 n=3 n=4 n=>5 n=10
t-test 0.730 0.839 0.900 0.934 0.990 0.867 0.954 0.983 0.991 0.998
L-test 0.856 0.877 0.936 0.938 0.939 0.991 0.993 0.997 0.997 0.998
Lys-test 0.849 0.876 0.933 0.937 0.988 0.991 0.993 0.997 0.997 0.998
L,-test (random) 0.851 0.861 0.933 0.934 0.987 0.984 0.988 0.994 0.997 0.998
L,-test (min L) 0.856 0.872 0.942 0.942 0.987 0.991 0.993 0.997 0.997 0.998

The numbers displayed represent the average AUCs of 100 simulations.

Table 1b. The area under the ROC curve (AUC) generated by each method for the model-based simulated data with two or four-fold

changes and n=2, 3, 4,5, or 10 replicates

Method (paired) Two-fold changes

Four-fold changes

n=2 n=3 n=4 n=5 n=10 n=2 n=3 n=14 n=5 n=10
t-test 0.622 0.690 0.741 0.784 0.900 0.754 0.857 0.912 0.945 0.992
L-test 0.701 0.711 0.767 0.776 0.884 0.890 0.902 0.949 0.954 0.992
Ly 5-test 0.694 0.712 0.764 0.775 0.881 0.883 0.901 0.946 0.953 0.992
L,-test (random) 0.695 0.701 0.758 0.770 0.879 0.879 0.892 0.941 0.949 0.991
L,-test (min L) 0.701 0.711 0.767 0.776 0.884 0.890 0.902 0.949 0.954 0.992

The numbers displayed represent the average AUCs of 100 simulations.
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ing von Willebrand factor (vWF) because it was evident that
there was a significant enrichment in the plasma MPs. For
this set, our estimated weight for L,-statistic was close to
zero, so that our results below are summarized with L-sta-
tistics.

Figure 3a shows the log,-ratio of ion abundances for
plasma MP and platelet MP against each of 94 peptides that
were ordered by the L-statistics. The first several peptides
were away from the center horizontal line indicating signifi-
cant difference in ion abundances between plasma MP and
platelet MP. For better illustration, the top ten peptides by L-
statistics are displayed in Fig. 3b including the FDRs of L-
statistics, FDRs (g-values, [21]) of t-statistics, and fold
changes. Our L-statistics identified eight peptides signifi-
cantly with FDR<0.2. Note that an FDR cutoff criterion can
be used with a relatively large value, here 0.2, since such
FDRs were rigorously adjusted for the random chances from
multiple comparisons. On the contrary, no peptide was
identified significantly (with 20% FDR) using the paired t-
test. Also note that the last two peptides had large fold chan-
ges (three-fold changes or higher) even though they were not
statistically significant both by the paired t-test and L-statis-
tics. Therefore, our L-statistics were able to rigorously and
sensitively identify significantly differentially expressed pep-
tides in this example.

Table 2 summarizes the top ten peptides selected by the
L-statistics, which were graphically shown with their con-
fidence bounds in Fig. 3b. All ten peptides had a high fold
change. However, fold change analysis alone is prone to a
high false positive error as illustrated above for the last two
peptides. Two peptides for B-globin and three peptides for
vWF had very small FDRs when the paired L-test was used,
while none was significant when the paired t-test was used.
vWF is a platelet and endothelial cell product that binds to P-
selectin, GP1b, and GP IIb/IIIa. B-Globin is one of the pep-
tides of hemoglobin involved in the transportation of oxygen
by red blood cells.

4 Discussion

While the current LC-MS/MS technology is quite useful for
analyzing purified samples of a small number of targeted
proteins, identification and quantification of differentially
expressed proteins (among thousands of candidate peptides)
are still not reliable for proteomics screening of complex
biological samples. In those experiments, replication is often
limited because of the high cost of experiments and the lim-
ited supply of samples. Our proposed method is particularly
useful in analyzing LC-MS/MS data from such experiments
with small sample sizes. As shown by our simulation study,
the proposed method effectively takes into account error
variability arising both from biological replication and tech-
nical replication.

We previously developed the LPE test [11], which is use-
ful in identifying differentially expressed genes with low-
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replicated microarray data. However, it was assumed that the
samples are obtained independently from two conditions to
apply the LPE test; hence, the LPE test is appropriate only for
the analysis of unpaired microarray data rather than paired
MS data such as the human plasma MPs data in our study.
Traditional statistical methods such as paired two-sample t-
tests were found to be statistically underpowered with low
replication (e.g., duplicate or triplicate) or non-normal inten-
sities. Thus, we developed the L-statistic approach for reliably
identifying differentially labeled peptides from LC-MS/MS
by accounting for pairing of samples. As shown in our
simulation and MP data applications, our newly developed L-
statistic approach is significantly more powerful than the
paired t-test in identifying differentially labeled peptides with
low-replicated and paired MS data, and enables us to identify
important proteins that have not been discovered by other
approaches.

For the human plasma MP data, the ion intensities were
extracted for 94 peptides because of limitations of the man-
ual use of software. However, using this application, we were
still able to show a significant improvement of our statistical
analysis and identified several significantly differentially
expressed proteins that were not detected using other statis-
tical methods. The development of an automatic extraction
technique can generate ion intensities of a much larger
number of peptides and proteins, which in turn allows
simultaneous examination of more biomarker candidates.
Our proposed method can be strengthened and improved
using such high-throughput data by borrowing error infor-
mation from a large number of observations.

It should be noted, however, that if some missing inten-
sity values exist for certain peptides in the paired samples,
the paired t-test needs to be performed using a reduced
number of pairs, even though one observation is available for
some pairs, which will result in a less accurate estimation of
variances when there is a small number of replicates. Addi-
tionally, if only one pair is left (n = 1), the paired t-test cannot
be used. In contrast, the variance estimation for the paired L-
test is robust even though some values are missing and while
it is still desirable to have a larger sample size to generate
higher statistical power, the L-statistics can effectively evalu-
ate the statistical significance of differentially expressed pro-
teins with a sample size of one. This is possible by borrowing
error information from other proteins with similar expres-
sion levels. Also note that median statistics (in terms of
paired difference evaluation) in our L- or L,-statistics can be
replaced by other robust tests such as Huber statistics with
appropriate adjustments of variance.

We developed an open source software program (PLPE),
which can be conveniently used in the R environment
(http://www.r-project.org/). The PLPE package will also be
included in the BioConductor website (http:// www.bio-
conductor.org/). A sample mean is used to estimate the dif-
ference of expression intensity levels for the paired t-test,
which is highly sensitive when there are extreme values or
outliers, particularly when the sample size is small. More
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Figure 3. Peptide ion intensity
for the human plasma MPs data;
the peptides were ordered by
FDRs of the paired L-statistics;
(A) all 94 peptides and (B) top
ten peptides.
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Table 2. Analysis of human plasma MPs data. The top ten peptides selected by the paired L-test were displayed

Protein Peptide Log, - fold Paired t-test Paired L-test
change Statistic  FDR (g-value) Statistic  FDR

B-Globin; hemoglobin B-chain  K.GTFATLSELHCDK.L 7.6 8.324 0.222 4.391 <0.001
VWEF precursor K.APTCGLCEVAR.L 5.5 4.130 0.382 4.342 <0.001
B-Globin; hemoglobin B-chain  R.LLGNVLVCVLAHHFGK.E 4.5 2.081 0.416 3.360 <0.001
VvWEF precursor R.CLPSACEVVTGSPR.G 4.1 3.839 0.403 2.688 <0.001
VWEF precursor K.VEETCGCR.W 5.2 2.205 0.403 2.472 <0.001
VWEF precursor K.CLAEGGK.I 4.6 2.709 0.382 2.056 0.121
VvWEF precursor R.VTGCPPFDEHK.C 4.7 3.744 0.382 2.082 0.138
VWEF precursor R.SGFTYVLHEGECCGR.C 4.0 10.525 0.222 2.100 0.162
Vinculin isoform VCL R.KIAELC*DDPK.E 2.9 1.938 0.416 1.676 0.252
VWEF precursor R.TATLCPQSCEER.N 3.8 1.840 0.403 1.713 0.258

p-Values were obtained from the paired t-test and FDRs from the paired L-test.

robust statistics, such as median and Huber M-estimator [22,
23], would be less sensitive to such extreme values. These
different options can be chosen by each individual using our
software program. In our current study, we used the median
for the L- and L,-statistics. If tighter estimates of expression
values than medians are desired despite a cost of greater
sensitivity to outliers, the Huber M-estimator can be used (6;
of Zip[(x; — y;) — 0] = 0 for each j where ¢(z) = z for I <k
and ¢(z) = k sign(z) for [z|>k default k = 1.5). It should also
be noted that we use the rank-invariance rule before esti-
mating pooled variance because variance estimates can be
distorted by a small number of highly differentially expres-
sed proteins.
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