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Different types of activated leukocytes play a crucial role in the pathogenesis of most kidney diseases from acute to chronic
stages; however, diabetic nephropathy was not considered an inflammatory disease in the past. This view is changing now
because there is a growing body of evidence implicating inflammatory cells at every stage of diabetic nephropathy. Renal
tissue macrophages, T cells, and neutrophils produce various reactive oxygen species, proinflammatory cytokines, metallo-
proteinases, and growth factors, which modulate the local response and increase inflammation within the diabetic kidney.
Although the precise mechanisms that direct leukocyte homing into renal tissues are not fully identified, it has been reported
that intercellular adhesion molecule-1 and the chemokines CCL2 and CX3CL1 probably are involved in leukocyte migration
in diabetic nephropathy. This review focuses on the molecular mechanisms of leukocyte recruitment into the diabetic kidney
and the involvement of immigrated immune cells in the damage to renal tissues.
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Diabetic Nephropathy
Diabetic nephropathy (DN) is the leading case of end-stage
renal failure (review in reference [1]). The major features of DN
include albuminuria, progressive reduction of GFR, and in-
creased risk for cardiovascular diseases (1–3). DN is associated
with the expansion of mesangial cells and development of
characteristic features of renal injury, such as thickening of the
glomerular basement membrane. In the end, glomerulosclero-
sis and tubulointerstitial fibrosis are observed in patients with
diabetic pathology (4,5). Approximately 30% of patients with
type 1 diabetes develop DN (6,7). Barkis et al. (8) reported that
approximately 25 to 30% of patients with type 2 diabetes will
develop overt DN. Recently, several murine models of DN
were developed (review in reference [9]). The well-established
streptozotocin (STZ)-induced (10–14) and nonobese diabetic
(NOD) (15–18) mouse models are most commonly used to
study type 1 diabetes. A few models of type 2 diabetes include
db/db mice (19,20), ob/ob mice (21), agouti mice on different
backgrounds (22,23), and C57BL/6 on high-fat diet (24). Al-
though some features such as the absence of renal failure com-
plicate the interpretations of the studies in murine models,
several distinct stages of DN can be detected in murine models
(9). Genetically deficient mice that lack different inflammatory
molecules are expected to help dissect the molecular mecha-
nisms of initiation and development of DN.

It is well known that hyperglycemia is a major factor risk for
DN (25), but hyperglycemia does not account for all changes
that are observed in renal tissues (26). It has been suggested
that advanced glycation end products (AGE) (27–30), activation
of protein kinase C (31), and overexpression of different growth
factors (32) are associated with the pathogenesis of DN. Extra-
cellular matrix accumulation is one of the hallmarks in the
development of the disease that leads to the formation of glo-
merular and interstitial lesions (1,26). However, recent studies
suggest that inflammatory processes and immune cells might
be involved in the development and progression of DN. Infil-
trated macrophages are found within renal diabetic tissues, and
recent studies demonstrated that macrophage-derived prod-
ucts can induce further inflammation in the diabetic kidney
(33–36). Furthermore, activated T lymphocytes have been asso-
ciated with DN (37,38). One of the most striking features of
leukocytes from patients with diabetes is the activated status of
blood neutrophils (39,40). There is no doubt that immune cells
participate in the vascular injury in the conditions of DN, and
their migration into the kidney is a crucial step in the progres-
sion of this disease.

Leukocyte Adhesion Cascade
In most organs, leukocyte recruitment is a well-organized

cascade-like process that consists of three major steps: (1) Se-
lectin-dependent leukocyte rolling on the endothelial layer, (2)
chemokine-dependent integrin activation with subsequent leu-
kocyte adhesion, and (3) diapedesis (41) (Figure 1). The initial
capture and rolling is mediated by a family of three type-I
cell-surface glycoproteins: L-, P-, and E-selectins (42). L-selectin
is expressed on monocytes, granulocytes, and lymphocytes,
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where it plays a crucial role in directing T and B lymphocyte
homing into peripheral lymph nodes (43). L-selectin ligands are
expressed in high endothelial venules of lymph nodes and
collectively are known as peripheral node addressins (44). P-
selectin is detected intracellular in �-granules of platelets and in
Weibel-Palade bodies of endothelial cells and is released to the
plasma membrane upon activation (45). P-selectin binds fuco-
sylated and sialylated O-glycans that are present on a single
glycoprotein, P-selectin glycoprotein ligand-1 (PSGL-1). All
neutrophils, monocytes, and lymphocytes express PSGL-1, but
its functionality as a P-selectin ligand depends on a highly
regulated set of glycosylation steps (46). E-selectin expression is
not found in most vessels in normal/noninflamed conditions;
however, E-selectin expression is rapidly upregulated under
inflammatory conditions (47). Recently, PSGL-1 (48) and CD44
(49) were proposed to be ligands for E-selectin, and other
ligands may exist. Importantly, the engagement of L-selectin
(50), PSGL-1 (51), and E-selectin (52) might lead to leukocyte
activation and stabilize arrest under flow. For neutrophils, the
successful transition from rolling to adhesion depends on the
time the rolling leukocyte interacts with the endothelium (53).
Slower rolling velocity provides prolonged time of the leuko-
cyte interaction with endothelial cells that leads to proper ac-
tivation of leukocytes and successful arrest. Other important
factors that will orchestrate the adhesion of rolling leukocytes
are arrest chemokines (54).

Arrest chemokines are present on the endothelial surface
under physiologic or pathologic conditions, and their interac-
tion with appropriate chemokine receptors on leukocytes will
lead to the activation of integrins on rolling cells. From in vitro
studies, a broad spectrum of chemokines have been suggested
to initiate activation of integrins and subsequent leukocyte
arrest, but only a few chemokines were identified as arrest
chemokines in vivo. Secondary lymphoid chemokine (SLC;
CCL21) on high endothelial venules induces arrest of naı̈ve and
memory T lymphocytes (55). Keratinocyte-derived chemokine
(KC; mouse Gro-�, CXCL1), monocyte chemoattractant pro-
tein-1 (MCP-1; CCL2), and regulated on activation, normal T
cell exposed and secreted (RANTES; CCL5) trigger arrest of
rolling monocytes (56–59). There are several reports that dem-
onstrate Gro-� and IL-8 as functional arrest chemokines for
neutrophils in vitro (60–62), and their receptor CXCR2 is nec-
essary for chemokine-induced neutrophil arrest in vivo (63). It
also has been recently reported that fractalkine (CX3CL1) in-
duces arrest of CD16� monocytes under flow conditions (64).

When rolling leukocytes receive activation signals through
selectin and/or chemokine receptor engagements, integrin ac-
tivation is initiated (65). Integrins are heterodimeric receptors
that consist of � and � subunits that form a ligand-binding head
and play a crucial role in leukocyte adhesion (66). In vitro, arrest
of rolling granulocytes has been shown to be through �4 inte-
grins (67), �L�2 (LFA-1) (68), and �M�2-(Mac-1) (69). Two mod-

Figure 1. Leukocyte adhesion cascade in a glomerular capillary. Monocytes (and other leukocytes; data not shown) are rolling on
endothelial cells (blue) via E-selectin (blue) and/or P-selectin (green) interacting with P-selectin glycoprotein ligand-1 (PSGL-1)
and other ligands. Integrins such as LFA-1 are in the off position (bent conformation). Upon encountering an arrest chemokine (red
ellipse on endothelium), signaling through chemokine receptors (red receptor on monocyte) causes conformational activation of
LFA-1 and probably other integrins, associated with a more extended conformation (top insert). This enables binding to
intercellular adhesion molecule-1 (orange homodimer), upon which integrins cluster by lateral movement in the leukocyte
membrane (bottom insert). Stable firm adhesion precedes transmigration (adhesion molecules not shown).
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els of integrin activation have been demonstrated: (1) Confor-
mational changes of integrins that lead to increased receptor
affinity and (2) the formation of clusters of heterodimers with
increased avidity (70). The best understanding of molecular
events comes from analysis of LFA-1/ICAM-1 interactions on
lymphocytes. Constantin et al. (71) demonstrated that chemo-
kine triggers affinity changes and clustering through distinct
signaling pathways. To elucidate the conformational changes
during integrin activation, Kim et al. applied the method of
fluorescence resonance energy transfer (66). In the resting state,
� and � subunits of LFA-1 are arranged close to each other;
however, upon intracellular activation of integrin adhesiveness
(inside-out signaling), this complex undergoes significant spa-
tial separation with opening of the binding site (66). In addi-
tion, chemokine-triggered lymphocyte activation induces an
extended state that primes LFA-1 for ligand binding and firm
adhesion (72,73).

Much has been learned regarding the last step of leukocyte
recruitment into inflamed tissues, the process of transmigration
(74,75). Several adhesion molecules, such as platelet cells adhe-
sion molecule (76), junctional adhesion molecule-1 (77), and
CD99 (78), are involved in the direction of leukocyte transmi-
gration, and �1-integrins are involved in leukocyte locomotion
in tissues (79).

Immune Cell Recruitment in DN
Little is known about the migration patterns of different

types of immune cells into renal tissues in DN. There are two
major limitations to studying the impact of immune cells on
renal vascular endothelial injury: The limited methods to char-
acterize leukocyte trafficking during inflammation and the lim-
ited techniques (80) to estimate the impact of inflammatory
mediators that are released by immune cells within the diabetic
renal tissues (81). Homing of neutrophils is thought to be a
hallmark of acute kidney inflammation, and recruitment of
macrophages and T cells indicates chronic inflammatory pro-
cesses. Although the detailed mechanisms of leukocyte migra-
tion to renal tissues are not completely understood, there is
evidence that selectins, integrins, and chemokines participate in
this recruitment.

Macrophage Recruitment
Macrophages are one of the central mediators of renal vas-

cular inflammation, and their accumulation is a characteristic
feature of DN (33–36). Adoptive transfer studies show that
macrophages can induce proteinuria and mesangial prolifera-
tion in a model of experimental glomerulonephritis (82). There-
fore, it is possible that infiltrating macrophages might induce or
accelerate the mesangial cell proliferation during the develop-
ment of DN. Detailed molecular mechanisms that direct mac-
rophage migration are not fully characterized, but chemo-
kines/chemokine receptors as well as integrins are involved in
this process. Increased expression of intercellular adhesion
molecule (ICAM-1) that serves as a ligand for LFA-1 was de-
tected in models of type 1 (83) and type 2 DN (84,85). ICAM-1
expression can also be induced by factors such as hyperglyce-
mia (31), AGE (86), oxidative stress (87), hyperlipidemia (88),

and hyperinsulinemia (89). The crucial role of ICAM-1 in a
model of type 1 diabetes that was induced by a single dose of
STZ was shown using ICAM-1–deficient mice (90). Diminished
infiltration of macrophages, reduced expression of TGF-� and
collagen IV in glomeruli, reduced urinary albumin excretion,
glomerular hypertrophy, and mesangial matrix expansion were
associated with reduced renal injury in diabetic ICAM-1–defi-
cient mice (90). In a model of type 2 diabetes, Chow et al. (91)
used ICAM-1–deficient db/db mice and showed significant
reduction in albuminuria and a decrease in the number of
glomerular and interstitial macrophages that was associated
with reduced glomerular hypertrophy, hypercellularity, and
tubular damage.

Urinary levels of MCP-1 (CCL2) are significantly increased in
patients with DN and are correlated with the number of CD68-
positive infiltrating macrophages in the interstitium (92). In
addition, both immunohistochemical and in situ hybridization
analyses revealed MCP-1–positive cells within the tubulointer-
stitial lesions of human DN (92). MCP-1 is considered to be
specifically activated by the transcriptional factor NF-�B (93),
especially in the presence of high glucose (94). Renal expression
of MCP-1 is also induced by elevated glucose levels and pos-
sibly AGE (95). Inhibition of the renin-angiotensin system im-
proves DN in patients with type 1 and type 2 diabetes through
the suppression of renal MCP-1 (96). These results suggest that
renal MCP-1 is involved in the direction of macrophage migra-
tion into diabetic kidney. Although experiments that evaluate
the possible regulation of inflammatory cell influx under con-
ditions of diabetes are not completed yet, there is a promising
study indicating that administration of anti–MCP-1 antibodies
prevents glomerular sclerosis and interstitial fibrosis (97).

Fractalkine (CX3CL1) is one of the few chemokines that exist
in membrane and soluble forms (98), and its expression was
detected in human coronary arteries with atherosclerosis and
diabetes (99) and in STZ-induced diabetic kidneys along the
glomerular capillary lumen and peritubular capillaries (100).
Human and murine monocytes express CX3CR1, which is the
receptor for fractalkine (101). Increased CX3CR1 mRNA expres-
sion was detected in an early stage of diabetic kidney, and some
CX3CR1-positive cells seem to be activated macrophages (100).
It has been shown that fractalkine induces arrest of CD16�

monocytes under flow conditions (64); therefore, it might be
possible that within renal tissues, fractalkine functions as an
arrest chemokine and serves as one of the factors that induce
monocyte adhesion preceding migration into diabetic kidney.
The expression of CX3CR1 by T lymphocytes under different
inflammatory conditions was reported recently (102,103), and
further studies will be necessary to determine the role of this
receptor in the T lymphocyte recruitment into the different sites
of inflammation. At the present time, it is unclear how macro-
phage accumulation in interstitium or glomeruli induces major
damage in the diabetic kidney. Some studies of other kidney
diseases suggest that inflammatory cells accumulating around
peritubular capillaries are important sites of cytokine and che-
mokine production, including IL-1, TNF-�, MCP-1, macroph-
age-colony stimulating factor, macrophage inflammatory pro-
tein-1� (MIP-1�; CCL4), and MIP-2 (CXCL2) in the injured
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kidney (104–108). It is interesting that in vitro studies have
shown that IL-1�, TNF-�, IFN-�, and other inflammatory stim-
uli can induce the production of a broad spectrum of chemo-
kines such as IL-8 (CXCL8), MCP-1, IFN-� inducible protein
(CXCL10), MIP-1� (CCL3), and RANTES (CCL5) by resident
renal cells (109). It is likely that these chemokines might direct
the migration of different leukocyte types into renal tissues and
induce further inflammation.

T Lymphocyte Recruitment
Although trafficking of naı̈ve, effector, and memory T cells

into peripheral lymph nodes, spleen, skin, gut, and liver has
been the subject of extensive studies, the mechanisms of T cell
homing into the kidney under different pathologic conditions
are not fully identified. The fundamental appreciation of the
importance of the leukocyte recruitment in the induction of
endothelial dysfunction has changed significantly the view of
the pathogenesis of DN. Because naı̈ve as well as effector T cells
constitutively express LFA-1, and ICAM-1 expression is found
on renal endothelial, epithelial, and mesangial cells (83–85), it is
likely that this interaction will play a significant role during T
cell migration into kidney. Indeed, homing of CD4� T cells into
glomeruli of diabetic kidney was decreased in ICAM-1–defi-
cient-db/db mice compared with db/db mice (91). It should be
noted that the activation of CD4� and CD8� T cells by AGE can
initiate IFN-� secretion by T cells (110), which will induce
further inflammation and oxidative stress within renal tissues.

The role of RANTES in directing of T lymphocyte homing
into the diabetic kidney is not clear yet; however, a study of a
murine lupus nephritis model identified an important role of
RANTES in this disease (111). Moore et al. (111) elegantly
showed that genetically modified tubular epithelial cells secret-
ing RANTES under the renal capsule increase interstitial ne-
phritis in MRL-Faslpr mice. Moreover, constitutive RANTES
expression directs subset-specific homing of CD4� T cells in
kidney. T cell accumulation is also found in the juxtaglomerular
apparatus of patients with type 1 diabetes (38). The functional
role of T cells within this compartment is not clear yet, but this
T cell influx is common among young patients with type 1
diabetes, especially those with accelerated duration of diabetes,
and correlates with glomerular filtration surface and albumin
excretion rate (38).

A T helper-1 (Th1) response precedes and accompanies type
1 diabetes (112); therefore, it is possible that accumulation of
Th1 cells will be prevalent in diabetic kidney. Little is known
about the homing of Th1 cells during the development and
progression of kidney diseases. It has been reported that the
homing of effector Th1 cells in glomeruli is P-selectin and
ICAM-1 dependent and associated with increased levels of
IFN-� and MIF in crescentic Th-1–mediated glomerulonephritis
(113). Although the mechanisms of Th1 cell migration in mod-
els of DN have not been reported yet, elevated levels of ICAM-1
and P-selectin within the diabetic kidney were found. Further
studies will elucidate the possible role of these adhesion mol-
ecules in the migration into the diabetic kidney.

Neutrophil Recruitment
Neutrophil influx is associated with the acute response to

inflammation or injury. Neutrophils secrete enzymes and prod-
ucts of oxidation that can harm the local microenvironment and
induce tissue damage. The role of neutrophils in the develop-
ment of DN is not well understood; however, there is some
evidence that neutrophils might be involved in this pathologic
process. Abnormal activation of blood neutrophils has been
reported in patients with type 1 and type 2 diabetes (39,40). DN
neutrophils failed to remove CD11b (�-subunit of Mac-1) from
the cell membrane, and CD11b expression persisted at elevated
levels even after a 90-min incubation (39). This elevated expres-
sion of CD11b could play a role in the directing of neutrophil
migration in the renal inflamed tissues expressing upregulated
levels of ICAM-1. In agreement with these data, Tasuji et al. (40)
showed that spontaneous adhesion of neutrophils from pa-
tients with diabetes is increased significantly compared with
adhesion of neutrophils from patients with normoalbuminuria
as well as healthy control subjects. The precise molecular mech-
anisms that orchestrate trafficking of neutrophils in diabetic
kidney are not yet defined, but studies with other models of
kidney pathology suggest that integrins might participate in
this process. In an inflammatory model of anti–glomerular
basement membrane (GBM) nephritis in rats blocking antibod-
ies for CD18 have revealed an important role of this family of
four integrins in the neutrophil homing (114).

A possible role of selectins in the development of DN was
suggested by increased expression of selectins in kidneys of
patients with diabetes (115). Expressions of E- and P-selectin
both were increased in the glomeruli and interstitial capillaries
of human diabetic kidneys compared with kidneys of other
glomerular diseases (115). E-selectin expression correlated with
the influx of CD14� monocytes/macrophages into the intersti-
tium. Several studies have shown elevated selectin expression
is associated with high glucose levels (116). AGE likely influ-
ence E-selectin expression through AGE receptors expressed by
macrophages and endothelial and mesangial cells (117). CD44,
a family of type I transmembrane glycoproteins expressed on
leukocytes and epithelial and endothelial cells, has been re-
ported to be involved in the neutrophil homing in a model of
renal ischemia/reperfusion injury (118). It is interesting that
CD44 was proposed recently to be a neutrophil ligand for
endothelial E-selectin (49). The impact of this novel mechanism
of leukocyte homing in diabetic nephropathy has not been
investigated yet.

Role of Immune Cells in Endothelial
Dysfunction

Endothelial dysfunction is associated with most forms of
cardiovascular diseases, such as coronary artery diseases,
chronic renal failure, and diabetes (119,120). There is an increas-
ing body of evidence that immigrated blood leukocytes might
significantly alter the phenotype of endothelial cells and in-
crease inflammation of the vascular bed (Table 1).

Macrophages can produce a broad spectrum of potential
inducers of renal injury; however, the precise cascade that leads
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to renal injury has yet to be determined. The expression of IL-1,
TNF-�, and macrophage MIF is markedly upregulated in the
injured kidney (36,109,120–122). Podocytes are considered the
major source of IL-1� and IL-1�, and at high glucose levels,
they may also produce MCP-1 (123,124). These molecules pro-
mote inflammation and induce further expression of macro-
phage colony-stimulating factor and ICAM-1 in renal cells
(125–127). Once activated, macrophages release nitric oxide,
reactive oxygen species, IL-1, TNF-�, complement factors, and
metalloproteinases (128), all of which promote renal injury.
Moreover, activated macrophages secrete factors such as PDGF
that promote fibroblast proliferation (129). Increased secretion
of TGF-� by peripheral blood mononuclear cells was reported
in patients with type 1 DN (130). With respect to the interaction
between macrophages and mesangial cells, it has been shown
that the culture supernatant of macrophages can stimulate mes-
angial cells to produce fibronectin in vitro (131). It should be
noted that macrophage-derived factors such as PDGF and IL-1
also can induce mesangial cell proliferation (132,133). Macro-
phage-derived IL-1� induces the synthesis of TGF-� that seems
to be at least partially responsible for fibrogenic and prolifera-
tive effects of IL-1� on fibroblasts (134). It is interesting that
renal fibrosis as measured by TGF-�1 expression, collagen IV,
and interstitial �-smooth muscle actin was dramatically re-
duced in ICAM-1–deficient mice (91). This is a key event in
disease progression, as mice that are deficient in ICAM-1 and,
therefore, defective in macrophage homing into renal tissues
have shown significant reduction in renal injury (91).

T lymphocytes from patients with diabetes have an activated
phenotype (37) and TNF-�–expressing Th1 cells are preva-
lently detected (112,121). In addition, AGE induce synthesis of
IFN-� that further accelerates the inflammation by the activa-
tion of macrophages and vascular cells with the renal tissues.

Usually, neutrophils are the first defense against bacterial
infections, because these leukocytes have a broad arsenal of
immediate action weapons. However, neutrophils also can in-
duce endothelial dysfunction by production of elevated levels
of reactive oxygen species and release of cytotoxic proteinases.
NADPH oxidase is a membrane-associated enzyme that gener-
ates a family of reactive oxygen species (reviewed in reference

[135]). Upon neutrophil activation, specific granules that con-
tain microbial peptides, proteins, and proteolytic enzymes are
released (136). It has been reported that neutrophils from pa-
tients with diabetes show increased release of oxygen radicals,
such as superoxide anion (40) and hydrogen peroxide (137),
that might damage endothelial cells and accelerate the progres-
sion of diabetic nephropathy (138,139). There is an increasing
body of evidence suggesting that neutrophils from patients
with diabetes display an activated phenotype, which is re-
flected by elevated spontaneous adhesion, TNF-�–stimulated
production of superoxide and N-formyl-methionyl-leucyl-phe-
nylalanine–stimulated aggregation in patients with type 2 (140)
and type 1 (141) diabetes.

Future Directions
One of the possibilities to reduce diabetic kidney damage

may be diminishing T cell and macrophage trafficking. Anti–
ICAM-1 antibodies or interventions aimed at reducing levels of
oxidative stress, hyperglycemia, and advanced glycation end
products may be promising approaches in reducing renal dis-
ease in patients with diabetes. Interactions of the chemokine or
chemokine receptor levels may provide specific therapies that
can curb the development of DN. A better understanding of
neutrophil, monocyte, and lymphocyte recruitment in DN is
likely to result from mechanistic studies in animal models of
DN. Promising mouse models (9) that facilitate this endeavor
now are available.
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