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Summary. Inflammation plays a critical role in the vascular
response to injury. In particular, mechanical injury using tech-
niques such as balloon angioplasty and stenting results in
complex inflammatory reactions which influence proliferation
of vessel wall constituents such as endothelial cells, smooth
muscle cells, and extracellular matrix proteins. Inflammatory
cells are recruited to the injured vessel wall initially as a repara-
tive mechanism; however, these same imflammatory processes
are also pivotal in the development of restenotic lesions. Leuko-
cytes serve as the primary inflammatory cells but we now know
that platelets produce a number of important inflammatory
mediators. This review describes the mechanisms that regulate
endothelial cell migration, smooth muscle cell activation, and
extracellular matrix protein production, all of which are key
components in the inflammatory response to vascular injury.

Keywords: atherosclerosis, balloon angioplasty, inflammation,
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Atherosclerosis is responsible for approximately 50% of all
deaths in the developed world. The concept that atherosclerosis
develops in response to vascular injury and involves inflamma-
tion and vessel remodeling is now well accepted [1]. Sponta-
neous atherosclerosis results from vascular injury induced by
multiple insults including hypercholesterolemia, diabetes,
smoking, and hypertension. Effective treatment strategies for
stenotic atherosclerotic lesions include percutaneous interven-
tions such as balloon angioplasty and stenting; however, these
procedures are associated with a significant recurrence rate.
Mechanical injury has been shown to provoke a distinct patho-
biological response that is significantly different from sponta-
neous atherosclerosis [2]. The processes invoked after
mechanical vascular injury lead to intimal hyperplasia, which
involves platelet deposition, proliferation and migration of
smooth muscle cells (SMC), and synthesis and deposition of
extracellular matrix. Mechanical injury may also result in
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vascular remodeling with vessel constriction and a reduced
vascular lumen as a result of scarring of the outer layer of the
vessel. These responses are collectively referred to as rest-
enosis. There are many factors involved in the vascular response
to injury; however, inflammatory mediators appear to play a key
role in the initiation and progression of both spontaneous
atherosclerosis and vascular injury secondary to mechanical
manipulation. These processes involve a complex network of
interactions that begin as a beneficial reparative process but may
ultimately result in detrimental vascular changes. Inflammatory
mediators include cell adhesion molecules, cytokines, chemo-
kines and growth factors that direct the recruitment of inflam-
matory cells including monocytes/macrophages, neutrophils,
and T-lymphocytes. We now know that platelets are not only
involved in the thrombotic component of vascular repair but are
also important in the elaboration of inflammatory mediators.
These mediators have multiple and diverse effects on the
constituents of the vessel wall, including endothelial cells
(EC), SMC, and extracellular matrix (ECM) proteins. This
review will focus on inflammatory processes that are involved
in the development of restenotic lesions after mechanical injury
such as balloon angioplasty or stent placement.

Background

A normal muscular artery consists of three distinct layers
(Fig. 1). The intima is a thin layer that lines the lumen of the
vessel and is composed of an endothelial monolayer and under-
lying extracellular connective tissue. In a normal artery the
endothelium creates a non-thrombogenic surface that functions
as a selectively permeable barrier, which controls transport of
solutes into the arterial wall. The media consists primarily of
SMCs and is separated from the intima by the internal elastic
lamina. In a normal adult artery the SMCs replicate at a very
slow rate and function principally to establish and maintain
vascular tone. Non-activated SMC in the media express a set of
proteins and adhesion molecules that are characteristic of the
contractile phenotype [3]. The outermost layer, know as the
adventitia, contains fibroblasts, collagen bundles, proteogly-
cans, and the vasa-vasorum, all of which are separated from the
media by the external elastic lamina.

Various animal models of mechanical injury have been
described and have contributed to our understanding of the
role of inflammation in the development of intimal hyperplasia
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Fig. 1. Anatomy of the vessel wall.

(Fig.2). Although the pathobiology of lesions formed in these
models differs somewhat from lesions found in human athero-
sclerotic arteries after mechanical injury, these models have
provided useful information regarding the composition of rest-
enotic lesions. These lesions consist primarily of ECM proteins,
SMCs, and varying numbers of inflammatory cells.

Endothelial injury and activation

Normal physiological roles of the endothelium that are key in
the vascular response to injury include regulation of leukocyte
adhesion, platelet activation and adhesion, and hemostasis/
thrombosis. To maintain these functions the endothelium
expresses and responds to multiple biologically active sub-
stances including cytokines, chemokines and cell adhesion
molecules. Mechanical injury of a vessel results in endothelial
damage with compromise of its normal physiological role and
the propagation of a number of inflammatory pathways which
lead to leukocyte adhesion, platelet activation, and SMC pro-
liferation, migration and ECM deposition, all of which will be
further discussed.

Leukocyte adhesion

Animal vascular injury models utilizing various forms of
mechanical intervention including wire withdrawal [4], air
desiccation [5], balloon denudation [6], and intravascular stent

deployment [7,8] have been used to incite endothelial damage.
Vascular responses to these forms of mechanical injury may
vary based on factors such as animal species and diet, but
collectively these models have contributed significantly to our
understanding of the pathobiological processes leading to inti-
mal proliferation and subsequent restenosis.

Mechanical injury damages or denudes the intact endothelial
monolayer and results in upregulation of cell adhesion mole-
cules (CAM), particularly on the regenerating endothelium.
There are three major classes of leukocyte cell adhesion
molecules: selectins, integrins, and the immunoglobulin super-
family of cell adhesion molecules. The selectins include
P-selectin, E-selectin, and L-selectin. P-selectin is stored in
the o granules of platelets and the Weibel-Palade bodies of
endothelial cells and can be rapidly mobilized to the cell surface
upon stimulation [9]. P-selectin glycoprotein-1 (PSGL-1) is the
primary ligand for P-selectin and is expressed on most leuko-
cytes; however, it serves as a functional P-selectin ligand
predominantly on neutrophils and monocytes where it under-
goes post-translational modification including fucosylation,
sialylation, and tyrosine sulfation [10]. P-selectin has been
shown to be intensely expressed on both endothelial cells
and platelets as early as 24 h after balloon denudation injury
of rat carotid arteries [11]. E-selectin is not constitutively
expressed on endothelial cells but is transcribed and mobilized
to the cell surface in response to such stimuli as tumor necrosis
factor (TNF)-«, interleukin (IL)1-, bacterial toxins, and oxi-
dants. E-selectin can also bind PSGL-1, but is thought to have
other unknown ligands. E-selectin is also upregulated on endo-
thelial cells after mechanical injury [12]. L-selectin is consti-
tutively expressed on myeloid cells and a large subset of
lymphocytes [13]. L-selectin ligands include glycosylation-
dependent cell adhesion molecule-1 (GlyCAM-1), mucosal
addressin cell adhesion molecule (MAdCAM-1), CD34, and
PSGL-1. The L-selectin/PSGL-1 interaction is thought to be
important in the process of ‘secondary tethering’ which in-
volves neutrophils and lymphocytes rolling on leukocytes al-
ready attached to the vessel wall [14,15] .

The immunoglobulin superfamily of cell adhesion molecules
includes intracellular adhesion molecule-1 (ICAM-1), ICAM-2,
and vascular cell adhesion molecule-1 (VCAM-1), which are
relevant to vascular injury. ICAM-1 is basally expressed on
many cell types including endothelial cells and smooth muscle
cells; however, VCAM-1 is not constitutively expressed [16—
18]. In an apolipoprotein-E-deficient mouse model of vascular
injury both ICAM-1 and VCAM-1 have been shown to be
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Fig. 2. Intimal hyperplasia in mouse carotid
wire injury (A), rabbit femoral air desiccation
injury (B), and pig coronary stent injury (C).
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Fig. 3. Selectins mediate the initial capture and
tethering of leukocytes to the endothelium. As
the leukocytes roll along the activated
endothelium various chemokines and cytokines
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upregulated after wire withdrawal injury. Furthermore, the sites
of ICAM-1 and VCAM-1 upregulation were associated with
increased macrophage infiltration [19]. Similar increases in
ICAM-1 and VCAM-1 expression were also noted in a rabbit
balloon injury model [20]. These cell surface proteins are
primarily regulated through transcriptional activation by nucle-
ar factor (NF)-kB and/or AP-1 [21]. (NF)-kB and AP-1 are both
transcription factors which are activated by proinflammatory
cytokines [21,22]. (NF)-kB is also activated by balloon injury,
shear stress, and oxidized LDL [23]. (NF)-kB is a central
mediator regulating many other inflammatory pathways in
response to vascular injury. In addition to the upregulation of
cell adhesion molecules, activation of (NF)-kB promotes cyto-
kine and nitric oxide (NO) production, stimulates smooth
muscle cell (SMC) migration and proliferation, and modulates
cell cycle pathways [23].

The integrin family of CAMs are heterodimeric proteins that
are composed of a and 3 subunits. There are currently 15 o and
eight B subunits known. VLA-4 (a431), is the major (3;-integrin
on leukocytes and is expressed on eosinophils, monocytes,
lymphocytes, natural killer cells, and transmigrated but not
blood neutrophils [24]. VLA-4 serves as the ligand for VCAM-
1 on endothelial cells [25]. Monoclonal antibody blockade of
VLA-4 attenuates leukocyte recruitment and neointimal for-
mation after carotid air desiccation injury in the ApoE-deficient
mouse [26]. LFA-1 (CD11a/CD18) and Mac1 (CD11b/CD18)
are [3,-integrins that are expressed on leukocytes and bind
ICAM-1 [27]. Macl is also capable of binding other vascular
wall components including extracellular matrix proteins such as
fibronectin, laminin, collagen and vitronectin, as well as coa-
gulation proteins such as fibrinogen, factor X, and denatured
proteins [28,29]. Both Macl and LFA-1 expression has been
shown to be upregulated on leukocytes after balloon angioplasty
[30] and play an integral role in firm adhesion and transmigra-
tion of the leukocyte through the activated endothelium. o, 35 is
another important integrin expressed on endothelial cells, SMC,
platelets and leukocytes [31]. In multiple animal models, ex-
pression of o33 is upregulated on EC and SMC after vascular
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injury [31]. Blockade of a,f; results in reduction of macro-
phage infiltration and decreased neointimal formation in several
balloon angioplasty models of vascular injury [20,32,33], but
the mechanisms are unknown.

These CAMs all have distinct roles in inflammatory cell
recruitment to the damaged vessel wall. Leukocyte recruitment
is a coordinated process involving rolling, adhesion, and trans-
migration of these cells (Fig.3). The selectins are responsible
for the initial leukocyte/endothelial interactions often termed
‘tethering.” These weak interactions can result in leukocyte
rolling along the endothelium of the vessel. Studies utilizing
animal models have confirmed the role of endothelial selectins
in leukocyte rolling [34,35] and the ultimate development of
restenotic lesions after balloon angioplasty or stenting [11,36—
38]. As the leukocytes ‘roll’ along the endothelium, chemokines
and other chemoattractants, as well as adhesion molecule
engagement, activate these cells. Leukocyte integrins redistri-
bute on the cell surface and acquire an activated conformational
change facilitating adherence to the upregulated immunoglo-
bulin family of CAMs, thus promoting firm adhesion. Once
adhered to the endothelium, the leukocytes begin the process of
transmigration into the subendothelial space via endothelial
cell—cell junctions or directly through endothelial cells [39].
The importance of these integrin-mediated events in leukocyte
trafficking is illustrated by the reduction in neointimal hyper-
plasia in Macl-deficient mice and in rabbits treated with a
monoclonal antibody to Macl after balloon injury [5,40].

Both circulating and tissue inflammatory cells are involved in
the vessel response to injury. Historically, monocytes/macro-
phages have been described as the primary white blood cells
involved in the vascular response to injury and the development
of neointimal hyperplasia; however, recent studies suggest that
lymphocytes, particularly T-lymphocytes [41-43], and neutro-
phils [44] are also important in the response to injury. However,
there are inconsistencies in the data regarding the role of
lymphocytes. Several studies have provided evidence that
lymphocytes upregulate the proinflammatory cytokines such as
interferon (IFN)-vy, ultimately resulting in intimal hyperplasia



1702 C. Davis et al

[43]. Other reports support the notion that lymphocytes provide
a protective role after vascular injury by inhibiting smooth
muscle proliferation via unclear mechanisms [44]. The predo-
minant inflammatory mediator may be dependent on the me-
chanism and type of injury. Until recently, neutrophils had not
been considered important mediators of neointimal growth in
response to vascular injury. Studies have now shown that early
after balloon injury, neutrophils appear to be the main cellular
infiltrate; in contrast, following stent-induced injury, monocytes
play a more prominent role [44].

Platelet activation and thrombus formation

Vascular injury resulting from mechanical instrumentation
results in disruption or denudation of the intact endothelial
monolayer and subsequent exposure of circulating blood cells
to the subendothelial matrix. The exposed subendothelial
matrix contains numerous platelet activating factors including
thrombin, ADP, thromboxane, platelet activating factor (PAF),
epinephrine, serotonin, and collagen. Activated platelets in turn
express many proinflammatory molecules such as cell adhesion
molecules, cytokines, chemokines, and other growth factors and
membrane-bound proteins which influence leukocyte recruit-
ment, smooth muscle activation, and arterial remodeling after
vascular injury (Table 1).

Platelets are thought to be recruited to the injured vessel wall
via platelet glycoprotein (GP) Ib interaction with von Willebrand
factor in the subendothelial matrix. Recently, however, GP VI
has been found to play a critical role in platelet—collagen inter-
action and recruitment to the injured vessel wall. Monoclonal
antibody blockade of GP VI resulted in an 89% reduction in
platelet tethering to the exposed subendothelium in a mouse
carotid injury model [45]. Furthermore, ligation of GP VI can
shift a3 and o, B integrins from a low to a high-affinity state,
resulting in stable arrest of platelets on the injured vessel wall.

As previously discussed, leukocyte chemotaxis is a key
component of the vessel response to injury. Platelet deposition
on the subendothelial matrix after endothelial denudation has

Table 1 Platelet-associated inflammatory mediators

been shown to play an important role in leukocyte chemotaxis
and transmigration into the intima of the injured vessel. Macl
has recently been shown to mediate platelet-leukocyte inter-
actions via a novel counterreceptor known as junctional adhe-
sion molecule 3 (JAM-3) [46]. Platelet-leukocyte interactions
are important in the development of both spontaneous athero-
sclerosis [47] and neointimal hyperplasia after mechanical
injury [5] as these interactions are thought to result in direct
transmigration of leukocytes across the platelet monolayer into
the developing neointima.

Endothelial damage compromises the delicate balance be-
tween antithrombotic and prothrombotic factors and results in
thrombus formation. Proinflammatory cytokines such as TNF,
IL-1 and IL-6 stimulate one of the most potent prothrombotic
agents, tissue factor (TF). In atherosclerotic vessels, TF is
primarily expressed by lipid-laden macrophages; however, after
arterial intervention such as balloon angioplasty TF is also
upregulated on endothelial cells and SMC [48]. TF stimulates
the extrinsic coagulation cascade resulting in thrombin produc-
tion and ultimately formation of a fibrin-rich thrombus.

Thrombin, a serine protease, binds its receptor PAR-1 (pro-
tease-activated receptor-1) on endothelial cells and platelets and
promotes leukocyte transmigration by upregulating endothelial
P-selectin, E-selectin, VCAM-1 and ICAM-1 expression through
activation of NF-kB [49]. Thrombin also stimulates local secre-
tion of chemoattractants such as MCP-1 and numerous growth
factors from the endothelium [49]. Finally, thrombin mediates
the release of PAF, a potent proinflammatory agent and vasodi-
lator, from endothelial cells. PAF, in a paracrine fashion, increases
endothelial permeability and monocyte chemotaxis [49].

Platelet P-selectin plays an important role in platelet-leuko-
cyte interactions after vascular injury as monocytes, neutro-
phils, and T-lymphocytes all express the P-selectin ligand,
PSGL-1 [10,50]. Apolipoprotein-E-deficient mice transplanted
with bone marrow from mice deficient in both ApoE-E and P-
selectin developed significantly smaller lesions after wire de-
nudation injury, illustrating the importance of platelet P-selectin
in the development of neointimal hyperplasia [38]. In addition,

Family Systematic name Function
P-selectin  Selectin family of cell CD62-P
adhesion molecules
PF4 C-X-C chemokine CXCL4
BTG C-X-C chemokine Precursor to CXCL7
IL-8 C-X-C chemokine CXCL8
MIP-1a C-C chemokine CCL3
RANTES  C-C chemokine CCL5
MCP-1 C-C chemokine CCL2
IL-1 Cytokine
PDGF Growth factor
CD40L Transmembrane protein, CD154
TNF subfamily
GPIIbllla  B;3-integrin CD41/CD61

Platelet-leukocyte, platelet—endothelial interactions, mediates deposition of RANTES,
facilitates constrictive remodeling

Leukocyte chemotaxis?

Leukocyte chemotaxis?

Leukocyte chemotaxis and arrest

Leukocyte chemotaxis, monocyte differentiation?
Leukocyte chemotaxis, arrest of rolling monocytes
Leukocyte chemotaxis, migration, monocyte differentiation
Stimulates chemokines? endothelial CAM expression
Chemotaxis, SMC mitogen, vasoconstriction

?Endothelial CAM expression, re-endothelialization

Platelet aggregation, platelet—neutrophil interaction via fibrinogen

PF4, Platelet factor 4; BTG, B-thromboglobulin; IL-8, interleukin-8; MIP-la, macrophage inflammatory protein-la; RANTES, Regulated Upon
Activation, Normal T-cell Expressed and presumably Secreted; MCP-1, monocyte chemoattractant protein-1; IL-1, interleukin-1; PDGF,

platelet-derived growth factor.
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P-selectin or PSGL-1 blockade using a monoclonal antibody
strategy results in a significant reduction in neointimal growth
[51-53]. Other animal studies using P-selectin gene deletion
have also shown a clear role of P-selectin expressed on en-
dothelial cells and platelets in the development of neointimal
hyperplasia after vascular injury [35,36,38].

Leukocyte adhesion and rolling are also facilitated by various
chemokines produced by activated platelets. Chemokines are
thought to provide the signals that convert the low-affinity,
selectin-mediated interaction into the higher affinity, integrin-
mediated interaction that leads to extravasation of leukocytes
[54]. Platelet factor 4(PF4) and B-thromboglobulin (BTG),
RANTES (regulated upon activation, normal T-cell-expressed
and presumably secreted), MIP1-a (macrophage inflammatory
protein) and platelet-derived growth factor (PDGF) are all a-
granule constituents that are chemotactic for leukocytes and/or
SMC [55]. PF4 and BTG are both members of the C-X-C family
of chemokines, while RANTES and MIP1-a are members of the
C-C chemokine family. Monocyte chemoattractant protein-1
(MCP-1), another member of the C-C chemokine family, and
RANTES are both upregulated in animal models of vascular
injury and appear important mediators of macrophage infiltra-
tion and subsequent neointimal formation [56,57]. Deposition
of RANTES at the site of vascular injury has been shown to be
dependent on P-selectin expression and specific RANTES
blockade results in decreased macrophage infiltration and
neointimal formation after arterial injury [57]. Platelets can
also mediate inflammatory reactions through the production of
cytokines and chemokines such as IL-1 and IL-8 [58,59].

More recently, activated platelets have also been found to
express CD40 ligand (CD40L, also known as CD154, gp39,
TRAP), an integral membrane protein and member of the TNF
gene superfamily which binds CD40 expressed on a number of
cells including endothelial cells [60]. CD40L upregulates en-
dothelial CAM expression as well as a number of proinflam-
matory chemokines including IL-8, MCP-1, and RANTES
[60,61]. CD40L is rapidly cleaved from the platelet membrane
to form soluble CD40L (sCD40L). Whether sCD40L maintains
the proinflammatory properties of the membrane-bound CD40
is unclear, but levels of sSCD40 have been found to be elevated in
patients with acute coronary syndromes and after percutaneous
coronary interventions [62]. Recently sCD40L has also been
shown to inhibit endothelial cell migration by increasing pro-
duction of endothelial reactive oxygen species, thus decreasing
re-endothelialization and allowing for further SMC prolifera-
tion with resultant intimal hyperplasia after vascular injury [63].

Vascular smooth muscle cell response

In response to vascular injury, SMCs exhibit many changes that
ultimately result in the pivotal processes of proliferation,
migration and apoptosis. The SMC is thought to undergo a
phenotypic change from a contractile SMC exhibiting SMC-
specific contractile and cytoskeletal proteins including SMC -
actin [3], vinculin, and desmin [64—69] to an activated secretory
state. This activated state is characterized by changes in affinity
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of SMC integrins for their ligands [70], expression of adhesion
molecules such as ICAM-1 and VCAM-1 [71,72], production of
numerous cytokines and growth factors including IL-1, MCP-1,
bFGF, transforming growth factor (TGF)-a, TNF-a, VEGF
[73,74], programmed cell death [75-77], and conversion to a
dedifferentiated state [78]. This phenotypic switch results in the
synthesis of more cytokines and growth factors that act as
paracrine mediators to activate other SMCs, facilitate leukocyte
chemotaxis and infiltration into the vessel wall [79-82], upre-
gulate adhesion molecule expression on endothelial cells, and
stimulate production of ECM components such as collagen,
elastin, and proteoglycans [83—86]. After vascular injury, SMCs
exhibit upregulated expression of VCAM-1 and MCP-1 via a
NF-kB-regulated mechanism [71]. Activated SMCs are char-
acterized by changes in morphology, with decreased cytoske-
letal myofilaments, reduced levels of contractile proteins such
as o-actin, and increased synthetic organelles such as Golgi
apparatus and rough endoplasmic reticulum [65—68]. Activated
SMC:s also proliferate and are thought to migrate to the intima,
where the inflammatory milieu promotes the maintenance of the
activated state with continued production of cytokines [87,88],
growth factors and ECM, ultimately contributing to the devel-
oping neointima. The size of the neointima is determined in
large part by the SMC and ECM content [89]. Inhibition of the
SMC ability to synthesize ECM proteins such as elastin has
been shown to decrease neointimal size [90]. There is also
evidence that these migrating neointimal SMCs behave differ-
ently from resident medial SMCs. They may be more sensitive
to noxious stimuli, and more likely to undergo apoptosis [91].
SMC activation and phenotypic switch is not a terminal,
irreversible change, as SMCs in the neointima have been shown
to increase their a-actin content in chronic experiments [92,93],
implying that their phenotype may switch back to the contrac-
tile phenotype.

Proliferation

After vascular injury, SMCs proliferate under the influence of
various mediators including oxidative stress [94,95], signaling
from damaged endothelium [96], growth factors released from
leukocytes and platelets including bFGF and PDGF, inter-
actions with infiltrating leukocytes [97], interactions between
the endothelial cells and the SMCs [96], and interactions of
SMCs with the ECM [98,99]. Two proinflammatory cytokines,
TNF-o and IL-18, are upregulated after balloon injury and have
been demonstrated to induce SMC proliferation [100]. These
cytokines are thought to act by upregulation of PDGF from
endothelial cells. However, other mechanisms are likely to be
involved [100]. The cellular mechanisms that regulate SMC pro-
liferation are not fully understood but involve complex regula-
tion of entry into the cell cycle at multiple levels [101-104]. The
cell cycle is a set of tightly regulated steps that control DNA
synthesis and mitosis. The resting SMC is maintained in a non-
proliferative gap phase (Gy); however, after injury the SMC
enters the G; phase where the necessary elements are assembled
that then allow entry into the synthetic phase (S phase) of DNA
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replication. SMCs subsequently enter a second gap phase (G)
during which proteins that are used in mitosis are synthesized.
Cell cycle regulators at various points along this cascade ensure
an orderly progression. There are numerous molecular regula-
tors of the cell cycle including the cyclin class of proteins
(cyclins A-H), the cyclin-dependent kinases (CDKs), and the
cyclin-dependent kinase inhibitors (CDKIs) such as p21, p27
and p57. The cyclins and CDKs are positive regulators of the
cell cycle, whereas the CDKIs are important negative regulators
[105]. Recent successful therapeutic strategies to prevent re-
stenosis after coronary stenting using rapamcyin and paclitaxel
are directed at cell cycle regulation [105,106]. Growth factors
also play a key role in regulation of SMC proliferation. For
example, in animal studies antibodies that block bFGF or PDGF
have been shown to reduce SMC proliferation after balloon
injury [78,107,108].

Smooth muscle cell migration

SMC adhesion receptors such as integrins, syndecans, and
cadherins function to anchor the SMC cytoskeleton to the
ECM, thereby allowing functional contraction of the vessel
wall [70]. After vascular injury, dedifferentiated SMCs are
motile and express an altered set of adhesion receptors. The
relationship with the ECM that binds the SMC cytoskeleton to
the extracellular vessel scaffolding is altered, and is thought to
allow SMC migration to the intima. The SMC integrins undergo
conformational changes that alter their affinity for their recep-
tors. In uninjured arteries, 3;-integrins are found in an active
state and play a role in maintaining the contractile phenotype
[109,110]. After injury, activated [3;-integrin expression
decreases, allowing increased proliferative and migratory activ-
ity of the SMC [111,112]. In addition, blocking the (35-integrin
with abciximab, a monoclonal antibody to 33, in the rat carotid
balloon injury model, decreased matrix metalloproteinase
(MMP) production, SMC migration, and neointimal size
[113]. Although not constitutively expressed, ICAM-1 and
VCAM-1 have been detected in SMCs after injury [72,114].
VCAM-1 is coexpressed with MCP-1 [114] and induces macro-
phage infiltration into the vessel wall. ICAM-1 expression
affects not only adhesion of monocytes, but also expression
of tissue factor and procoagulant activity of monocytes [115].
VCAM-1 and ICAM-1 expression leads to augmented adhesion
of ay-integrin-positive lymphocytes and 3,-integrin-expressing
monocytes [116,117]. As discussed above, these adhesion
molecules are thought to play an important role in leukocyte
trafficking in the vessel wall.

Apoptosis

Apoptosis, or programmed cell death, is an integral part of the
cellular response to vascular injury. Endothelial cells, leuko-
cytes, and SMC may undergo apoptosis but the net effects are
still controversial. Immediately after balloon injury, extensive
SMC death occurs, and the remaining SMCs then proliferate
and migrate [95]. Medial SMC apoptosis occurred as early as

30min after balloon injury in both rat carotid and rabbit iliac
arteries [118]. In a rat carotid balloon injury model as many as
14% of resident SMCs underwent apoptosis 24 h after balloon
injury [77]. The remaining SMCs respond to modulatory cyto-
kines such as TNF-a and IL-13, as previously mentioned, from
the damaged endothelium, extracellular matrix, and paracrine
signals from neighboring SMCs to proliferate and migrate to the
neointima [77]. Whether the overall effect of SMC apoptosis is
beneficial or detrimental is not clear. After injury, apoptosis
may be beneficial in that it counteracts SMC proliferation that,
if left unchecked, could lead to an exaggerated neointima
formation and significant luminal narrowing. However, in the
later stages of the vascular response, remnants of apoptotic
SMCs may cause oxidative damage to surrounding cells and
result in the influx of tissue macrophages in an attempt to clear
the damaged SMCs and engulf the remaining cellular debris.
This macrophage infiltration in turn leads to increased metal-
loproteinase activity and decreased collagen content, which
may lead to plaque instability. The regulation of SMC apoptosis
is not completely understood, although it appears to be a tightly
regulated process [119]. There is evidence that macrophages
may induce SMC apoptosis via direct interaction between
CD95 (Fas) on SMCs and Fas-ligand (Fas-L) expressed on
activated macrophages. Furthermore this Fas/Fas-L-mediated
SMC apoptosis may be nitric oxide-dependent [120]. There is
also evidence that SMC apoptosis may be mediated by inflam-
matory cytokines such as TNF-a [121], but a definitive role has
not been shown.

Extracellular matrix production and remodeling

The extracellular matrix serves as the scaffold of the vessel wall
that provides an architectural framework onto which other
vascular components (SMCs, endothelial cells, etc.) are orga-
nized. The ECM is predominantly produced by SMC and
fibroblasts, and is composed of collagen, elastin, and proteo-
glycans. It makes up a majority of the neointimal volume of
restenotic lesions [122]. ECM production is primarily regulated
by TGF-a1 and PDGF [83-86]. TGF-a1 increases the synthesis
of fibronectin, fibrillar collagens, elastin, thrombospondin, and
proteoglycans [83—-86], all of which are increased after vascular
injury [122]. SMCs in the neointima produce more ECM than
those in the media [123-125]. Macrophages that have traversed
the vessel wall influence ECM composition and SMC migration
via degradative proteases known as matrix metalloproteinases
(MMPs) [126]. Activated macrophages also secrete proinflam-
matory cytokines such as IL-1 and TNF-« that regulate MMP
gene expression in vascular cells [126]. Changes in the com-
position of ECM can alter SMC proliferation and migration, as
well as influence the leukocytes that have migrated into the
vessel wall [99,127]. MMPs are thought to be important for
resorption of ECM to facilitate SMC migration from the media
across the internal elastic lamina into the intima. Indirect
evidence such as decreased SMC migration and subsequent
neointimal proliferation after administration of a nonselective
MMP inhibitor in a rat balloon injury model supports the role of
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MMPs in the development of neointimal hyperplasia [126].
Recently, targeted disruption of the MMP-9 (gelatinase) gene in
a mouse model of arterial injury resulted in decreased SMC
migration and intimal hyperplasia [128]. MMP-9-deficient
SMC also had decreased capacity to contract collagen [128],
suggesting decreased constrictive remodeling effects. Tenascin-
C is an extracellular matrix glycoprotein thought to be involved
in cell release and migration. In a rat and porcine model of
balloon arterial injury, tenascin-C expression is increased in the
adventia early after injury, but expression is then noted in the
neointima over the next 7-14 days, suggesting that this glyco-
protein is important in SMC migration [129].

Vascular remodeling, particularly constrictive or negative
remodeling, after mechanical injury has been linked to in-
creased expression of inflammatory mediators. Monoclonal
antibody blockade of P-selectin results in less adventitial in-
flammation and fibrosis with an overall decrease in vessel
constriction after balloon injury in the rat carotid artery [11].
ECM glyproteins such as osteopontin and thrombospondin are
now known to have mediating effects on SMCs. Thrombos-
pondin is synthesized and secreted by activated platelets,
macrophages, SMCs, and fibroblasts, and thrombospondin
accumulation is seen in restenotic arteries [130]. In rat carotid
arteries, antithrombospondin-1 blocking antibody suppressed
neointima formation after balloon injury [131]. Osteopontin
levels are also increased after arterial injury, and may mediate
SMC migration [132].

Once thought to be a passive bystander, the ECM is now
known to play an active and significant role in both the intimal
hyperplasia and vascular remodeling that occur in response to
injury. The ECM constituents are influenced by numerous
interactions of inflammatory mediators, many of which have
yet to be elucidated.

Conclusion

Over the past decade, percutaneous coronary and peripheral
interventions have become a common therapy for stenotic
atherosclerotic arteries. The immediate outcomes of these
procedures are successful, but by virtue of their mechanisms
of luminal enlargement they incite further vascular injury. The
pathobiological response of these arteries with underlying
atherosclerotic disease to mechanical injury is complex and
may result in restenosis. It is now clear that inflammatory
processes play a pivotal role in the vascular response to
mechanical injury. As discussed, inflammatory mediators are
involved in the key components of the development of rest-
enotic lesions, including leukocyte and platelet adhesion to the
damaged endothelium or subendothelium, migration and pro-
liferation of SMCs, ECM synthesis, and constrictive vascular
remodeling. Many of the inflammatory mediators, such as P-
selectin, are now known to have multiple roles in the response to
vascular injury. In fact, many have overlapping functions, which
often make it difficult to delineate a specific mechanism for a
particular inflammatory mediator. Importantly, we now also
recognize that activated platelets are not only important for
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thrombus formation but also provide a host of proinflammatory
mediators that influence adhesion molecule expression, cyto-
kine and chemokine release from endothelial cells and leuko-
cytes, and ECM synthesis and degradation. Numerous animal
studies have demonstrated the role of inflammatory processes in
the vascular response to mechanical injury. As these pathways
are further defined, improved treatment strategies for athero-
sclerotic vascular disease will probably include therapies to
modulate postprocedure inflammation and subsequent intimal
proliferation.
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