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ABSTRACT
Motivation: In microarray studies gene discovery based on
fold-change values is often misleading because error variab-
ility for each gene is heterogeneous under different biological
conditions and intensity ranges. Several statistical testing
methods for differential gene expression have been suggested,
but some of these approaches are underpowered and result
in high false positive rates because within-gene variance
estimates are based on a small number of replicated arrays.
Results: We propose to use local-pooled-error (LPE) estim-
ates and robust statistical tests for evaluating significance of
each gene’s differential expression. Our LPE estimation is
based on pooling errors within genes and between replicate
arrays for genes in which expression values are similar. We
have applied our LPE method to compare gene expression
in naïve and activated CD8+ T-cells. Our results show that
the LPE method effectively identifies significant differential-
expression patterns with a small number of replicated arrays.
Availability: The methodology is implemented with S-PLUS
and R functions available at http://hesweb1.med.virginia.edu/
bioinformatics
Contact: nj7w@virginia.edu

INTRODUCTION
In a microarray study each gene’s differential expression pat-
tern is usually assessed by (typically pairwise) contrasts of
mean expression values among experimental conditions. Such
comparisons have been routinely assessed as fold changes
whereby genes with greater than two or three fold changes are
selected for further investigation. However, a gene showing a
high fold-change between experimental conditions might also
exhibit high variability and hence its differential expression
may not be significant. Similarly, a modest change in gene
expression may be significant if its differential expression
pattern is highly reproducible.

∗To whom correspondence should be addressed.

A number of authors have pointed out this fundamental flaw
in the fold-change based approach (e.g. Jinet al., 2001). And,
in order to assess differential expression in a way that con-
trols both false positives and false negatives, the standard
approach is emerging as one based on statistical significance
and hypothesis testing, with careful attention paid to reliability
of variance estimates and multiple comparison issues.

The two-samplet-statistic is often used for testing each
gene’s differential expression and the procedures such as the
Westfall–Young step-down method have been suggested to
control the family-wise error rate (FWER; Dudoitet al., 2002).
Theset-test and Westfall–Young approaches rely on reason-
able estimates of reproducibility or within-gene error to be
constructed, requiring a large number of replicated arrays.
However, the reality is that since microarrays are expensive,
and target RNA sample available is often limited, experiments
are typically performed with a limited number of replicates.
When a small number of replicates are available per condi-
tion, e.g. duplicate or triplicate, the use of naive, within-gene
estimates of variability does not provide a reliable hypothesis
testing framework. For example, a gene may have very sim-
ilar differential expression values in duplicate experiments by
chance alone. This can lead to inflated signal-to-noise ratios
for genes with low but similar expression values. Furthermore,
the comparison of means can be misled by outliers with dra-
matically smaller or bigger expression intensities than other
replicates. As such, error estimates constructed solely within
genes may result in underpowered tests for differential expres-
sion comparisons and also result in large numbers of false
positives.

A number of approaches to improving estimates of variab-
ility and statistical tests of differential expression have thus
recently emerged. Several variance function methods have
been proposed. Kamb and Ramaswami (2001) suggested a
simple regression estimation of local variances; Nadonet al.
(2001) used a smoothing-spline fit for standard error estim-
ates on the mean log intensities; and Durbinet al. (2002)
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estimate a two-parameter variance function of mean expres-
sion intensity. Huang and Pan (2002) compared some of these
variance estimation methods. Recently, Linet al. (2003) sug-
gested the use of data-adapted robust estimate of array error
based on a smoothing spline and standardized local median
absolute deviation (MAD). Their robust error estimation is
similar to our local-pooled-error (LPE) estimation described
below. The variance function methods described above bor-
row strength across genes in order to improve reliability of
variance estimates in differential expression tests. This is con-
ceptually similar to the SAM method of Tusheret al. (2001)
and the empirical Bayes methods of Lönnstedt and Speed
(2002) and Baldi and Long (2001). These methods also shrink
the within-gene variance estimate towards an estimate includ-
ing more genes, and construct signal-to-noise ratios using
the shrunken variance in a similar fashion to the LPE test
described below.

We introduce LPE estimation for within-gene expression
error, whereby variance estimates for genes are formed by
pooling variance estimates for genes with similar expression
intensities from replicated arrays within experimental condi-
tions. The LPE approach leverages the observations that genes
with similar expression intensity values often show similar
array-experimental variability within experimental conditions
(Lee, 2001); and that variance of individual gene expres-
sion measurements within experimental conditions typically
decreases as a (non-linear) function of intensity (Lee, 2002;
Lee and O’Connell, 2003). The LPE approach handles the
situation where a gene with low expression may have very
low variance by chance and the resulting signal-to-noise ratio
is unrealistically large. The pooling of errors within local
intensities shrinks such variances to the variance of genes with
similar intensities.

LOCAL-POOLED-ERROR
For oligonucleotide data e.g. Affymetrix® arrays, letxijk be
the observed expression intensity at genej for arrayk and
samplei. As an initial exploratory plot of expression intensit-
ies, many analysts prefer to plot the log intensity ratio between
arrays and within genes (Yanget al., 2002). For duplicate
arrays,k = 1, 2, plots ofM = log2(xij1/xij2) versusA =
log2

√
xij1xij2, j = 1, . . . ,J , can facilitate the investigation

of between-duplicate variability in terms of overall intensity.
For different samples or experimental conditions,i = 1, 2,
plots of M = log2(x1jk/x2jk) versusA = log2

√
x1jkx2jk,

j = 1, . . . ,J , show differential expression between samples
and within genes.

TheM versusA plot provides a very raw look at the data
and is useful in detecting outliers and patterns of intensity
variation as a function of mean intensity, whereas the log2 xij1

versus log2 xij2 plot sometimes gives the illusion of better
reproducibility than is actually present (Yanget al., 2002).
Note that expression intensities are frequently transformed as

log base 2 in practice, which allows a natural interpretation of
differential expression as fold changes and makes the right-
skewed intensity distribution symmetric and closer to a normal
distribution.

While the log transformation enables a convenient inter-
pretation of differential expression as fold changes, it is not
a transformation that typically stabilizes variance. Figure 1
shows the log intensity ratioM = log2(xij1/xij2) between
triplicate oligonucleotide arrays for each of three differ-
ent RNA-sample conditions from a mouse immune-response
study, which will be described in more detail later. As seen
in this figure, the variability of log-intensity measurements
in oligonucleotide microarrays decreases non-linearly as that
gene’s mean expression intensity increases. This is due to in
part common background noise at each spot of the microarray.
At high levels of expression intensity this background noise
is dominated by the expression intensity, while at low levels
the background noise is a larger component of the observed
expression intensity.

The LPE is derived by first evaluating the baseline error
distribution for each of the compared experimental conditions,
sayX andY . For example, when duplicated arrays (X1,X2)
are used for conditionX, the variance ofM (= X1 − X2 and
X2−X1) on pre-determined quantiles (percentiles by default)
of A [= (X1 + X2)/2] is evaluated. Note that even though
the expected value ofM is zero, its estimated mean is often
different from zero when only one of the differencesX1 −X2

orX2−X1 is used for variance estimation. However, the local
mean is guaranteed to be zero if both differences are utilized.
The estimated variance ofM using both differences is slightly
different from that using one of the two differences {by a
factor of[(n − 1/2)/(n − 1)]}; we adjust by this factor in our
variance estimation. When there are more than duplicates, all
pairwise comparisons of(M,A) are pooled together for such
estimation. Then a smooth local regression curve is fit to the
variance estimates on the quantiles (Fig. 1). The baseline error
distribution for conditionY is similarly derived.

Thus, each baseline-error distribution is derived in two steps
from all the replicated arrays under each condition: (1) estima-
tion of error ofM within quantiles ofA (containing equal
numbers of genes) and (2) non-parametric regression fit to
the quantile error estimates. This two-stage error estimation
approach is adopted because direct non-parametric estima-
tion often leads to unrealistic (small or large) estimates of
error when only a small number of observations are avail-
able at a fixed-width intensity range. In Figure 1 we also show
the quantile estimates and the smooth-estimated LPE variance
functions for the three cases of the mouse immune-response
study.

TESTS FOR DIFFERENTIAL EXPRESSION
We evaluate the significance of our LPE statistics as follows.
First, each gene’s medians under the two compared conditions
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Fig. 1. Log intensity ratio log2(Xij1/Xij2) (M) as a function of average gene expression log2
√

xij1xij2 (A). Top row of panels(a), (b) and
(c) represent local pooled error (LPE) for naïve, 48 h activated, and T-cell clone D4, respectively. Variance estimates in percentile intervals
are shown as points, and smoothed curve superimposing these points is also shown. Bottom row of panels represent correspondingM versus
A graph. The horizontal line represents identical expression between replicates.

are calculated. The approximate normality of medians (or any
order statistics) is obtained as:

Lemma. If {Y(k)}nk=1 are the order statistics of a random
sample {Xi}ni=1, from a distribution F (or density function f ),
then Y(k) is asymptotically distributed as a normal distribution
with mean ξ and variance [pξ (1−pξ )]/[nf 2(ξ)], where ξ =
F−1(pξ ) and pξ = k/(n + 1) (Mood et al., 1974).

This normal approximation can be generally justified with
a large number of replicates. However, the normality of our
LPE statistics is satisfied with a small number of replicates
if the individual log-intensity values within a local intensity
range follow a normal distribution. (Refer to our supple-
mental data at our web site for local normality of array data;
http://hesweb1.med.virginia.edu/bioinformatics/.) Note also
that the LPE test is different from a non-parametric median
test, which typically has a low statistical power in small
sample cases (David, 1981).

The LPE statistic for the median (log-intensity) difference
is then calcuated as:

z = Med1 − Med2

σpooled
,

where Medi , i = 1, 2, is the median intensity of theith
sample;

σ 2
pooled= π

2
[σ 2

1 (Med1)/n1 + σ 2
2 (Med2)/n2],

wheren1 andn2 are number of replicates in the two array
samples being compared;σ 2

i (Medi ), i = 1, 2, is the estim-
ate of variance ofX (or Y ) from theith LPE baseline-error
distribution at each median log-intensity Medi . The constant
π/2 is obtained ifξ andf in the above lemma are replaced by
median and the standard normal density function. Note that
this constant is a fixed value regardless of array data sets, and
is different from the variance stabilizing factor of Tusheret al.
(2001), which needs to be calculated for each data set.

We evaluate our LPE statistics slightly differently when only
duplicated arrays are available because medians are the same
as means and our test statistic is not as robust. In this case
the LPE test becomes a sample-mean-basedz-test, so that
the scaling factorπ/2 for the pooled variance is not needed.
Also, because this significance evaluation can be considerably
affected by an outlier, we use an LPE-based test for outlier
detection, comparingX1 − Y1 versusX2 − Y2 andX1 − Y2
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versusX2 − Y1 for their consistency. Genes that show sig-
nificant differences in any of these comparisons are flagged.
Note that if no replicated arrays are available, our LPE and
any other statistical tests mentioned above cannot be applied.

We make ap-value adjustment for our LPE statistics to con-
trol the FWER or false discovery rate (FDR) under a desired
level (e.g. Linet al., 2003). FWER may be controlled using a
single-step Bonferroni adjustment or a step-down procedure
such as those described in Hochberg (1988) and Westfall and
Young (1993). The FDR may be controlled by adjustments
described in Benjamini and Hochberg (1995).

In order to compare the performance of LPE and other
methods, such as the Bonferroni adjustedt-test and Westfall–
Young procedure, we conducted a simulation study. In this
simulation a random sample of size 50 000 genes was gen-
erated from normal distributions using the means and estim-
ated variances of the genes in the immune-response study
described below (specifically, CD8+ T-cell clone condition).
The second random sample of 50 000 genes was generated
similarly, but adding two fold-change expression as compared
to the corresponding genes in the first random sample. Three
and five replicates of each of these genes were generated for
our testing (so, 150 000 or 250 000 random numbers in each
of the two comparing conditions).

We evaluated the power of our LPE-test (Bonferroni adjus-
ted), two-samplet-test (Bonferroni adjusted), and Westfall–
Young permutation procedure (FWER adjusted) for the cases
with three and five replicates on varying intensity ranges.
As shown in Figure 2, the Westfall–Young andt-tests could
identify few significant genes with three replicates, whereas
the LPE test’s power rapidly converges to one in the high
intensity region. The LPE power curve also shows a signific-
antly better performance than the others with five replicates.
Thus, our LPE test achieves a statistical power close to one
rapidly in both three- and five-replicate cases. Note that this
simulation setting is more favorable to the two-samplet-test
than to the LPE test because there are no extreme outliers,
which can be eliminated only by the LPE test. We also note
that we do not present ROC curves as simulation summaries
because a full range of the cutoff criteria of these tests can-
not be obtained with a small number of replicates, which is
the main goal of our simulation investigation. For example,
Westfall–Young’s (permutation-based)p-values of many dif-
ferentailly expressed genes exceeded and were thresholded
at one.

MICORARRAY STUDY OF T-CELL IMMUNE
RESPONSES
Cytotoxic T-cells play a central role in the pathophysiology of
many inflammatory lung diseases wherein they accumulate in
the alveolar space and/or in the interstitium. Especially, Cyto-
toxic CD8+ T-cells function primarily in the clearance of virus
infections (Lukacheret al., 1986). Analysis of migration and
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Fig. 2. Power of LPE-test (Bonferroni-adjusted), two-samplet-test
(Bonferroni-adjusted), and Wesfall–Young permutation procedure
(FWER adjusted) to detect a two-fold change andp-value≤ 0.05
based on a simulation study with 50 000 genes with three or five
replicates.

retention of CD8+ T-cells in the lungs suggests that the pro-
cess is dependent on the activation status of the adoptively
transferred T-cells (Hafezi-Moghadam and Ley, 1999). In
this study, triplicate microarrays of Affymetrix® murine chip,
MG-U74vA, containing 12 488 genes were used to investigate
each of the three populations of immune exposure: naïve (no
exposure), 48 h activated, and CD8+ T-cell clone D4 (long-
term mild exposure). Signal intensity values were obtained
from the Affymetrix’s MicroArray Suite software (MAS 5.0).
Figure 3 shows the genes exhibiting significant differential
expression patterns by the LPE test, displaying their fold
change values. Many of these genes are well-known for their
functions in the literature of mouse immune response [see
Hafezi-Moghadam and Ley (1999) and references therein].
The Westfall–Young test and the two-samplet-test were not
able to identify many of the differentially expressed genes that
were detected by the LPE method.

Many interesting and important genes were identified by
our LPE test: L-Selectin is known to be down-regulated by
activation and was found significantly reduced in D4 clones
as well as 48 h activated cells. CD44 and IL-2 were lower in
naïve and D4 cells compared to 48 h activated cells (refer to
our web site for the list of other interesting targets).

Figure 4(a) shows a plot betweenp-values and fold change
for naïve mice sample and CD8+ T-cell D4 clone. The two
horizontal lines represent two fold changes in both directions
and the vertical line the Bonferroni-adjusted LPEp-value
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Fig. 3. Fold change of gene expression for three different CD8+ T-cells, naïve, 48 h activated, and T-cell clone D4. All the genes were selected
with Bonferroni-adjustedp-value≤ 0.05 and at least 2-fold change. In all the three panels,X andY axes are log base 2 transformed. The
horizontal and vertical dotted lines mark the boundary of 2-fold change. Concordant changes in gene expression are in the first and third
quadrant, discordant in second and fourth. Quadrant numbers are marked in the respective quadrants. Differential expression patterns of some
well-known genes are marked.

0.05. The numbers of genes in each sector of the left panel
are also shown. Note that the two RNA samples—naïve and
CD8+ T-cell clone are biologically quite heterogeneous, and
a large number of differentially expressed genes were identi-
fied both by LPE test and fold change. In this figure a weak
correlation is found between significant differential expres-
sion and fold changes, which shows differential-expression
discovery based on fold-change alone is misleading because
a large number of insignificant genes are identified with high
fold-changes in the low intensity region as displayed with the
blue color in Figure 4(b).

DISCUSSION
Gene discovery based solely on fold change is often mislead-
ing due to different error variances under different biological
conditions and/or on different intensity ranges of microarray
expression. Several statistical methods for evaluating differ-
ential gene expression have been suggested using within-gene
variance estimates from replicated arrays (Kerr and Churchill,
2001; Dudoitet al., 2002). However, these within-gene-error
methods have poor statistical properties in low replicate exper-
iments because within-gene variance estimates are unreliable
due to the small number of replicate arrays.

Our LPE estimation overcomes this limitation by borrowing
strength from genes in local intensity regions for estima-
tion of array error variability. Variance estimation is based
on a two-step procedure—estimation of local error within
quantile ranges of average intensities, and non-parametric
smoothing. Note that the LPE variance is estimated accur-
ately within intensity quantiles and that our LPE statistic has
an approximate normal distribution within these quantiles.

We investigated the effects of subinterval granularity and
found that when the number of intervals was reduced from
100 to 50, only three genes were changed among the top 100
genes identified. However, when the number of subintervals
was reduced to 10 or to 1 (the global error estimate), this
resulted in quite different lists of significant genes. Note that
the number of subintervals is an option that can be freely
chosen in our software.

Our LPE approach is part of an emerging literature that
attempts to improve estimates of variability and statistical
tests for differential expression. This literature includes the
variance function methods of Kamb and Ramaswami (2001),
Nadonet al. (2001), Durbinet al. (2002) and Linet al. (2003).
Also, the methods of Tusheret al. (2001) Lönnstedt and Speed
(2002), Baldi and Long (2001), and Newtonet al. (2001)
which shrink the within-gene variance estimate towards an
estimate including more genes, and construct signal-to-noise
ratios using the shrunken variance, are similar in spirit to our
LPE test.

In our simulation study, when there are only three replic-
ates available, the two-samplet-test and the Westfall–Young’s
permutation-based test were found to identify few genes with
2-fold changes, while our LPE test showed a dramatically
higher power in detecting these differentially expressed genes.
Even with five replicates, the other tests failed to identify
differentially-expressed genes in most cases. More extens-
ive simulation studies are in progress by using non-Gaussian
distributions and/or by adding certain outliers.

We currently use median-based LPE statistics, which are
effective in eliminating a large proportion of outliers. A more
general family of robust statistics, such asM-estimators is
worth investigating. In a preliminary investigation we found
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Fig. 4. Fold change (log2) of gene expression and LPEp-values(− log2) for naïve mice sample and CD8+ T-cell D4 clone (left panel). The
two horizontal lines mark the 2-fold change threshold and the vertical line marks the threshold of cutoff Bonferroni-adjustedp-value= 0.05.
Genes shown in green color undergo low fold change but changes are significant—these genes are missed by fold change method alone. Genes
shown in blue color have high differential expression but are not significant and would be detected asfalse positives by a fold change method.
Right panel shows the distribution of genes inM versusA format. There is no clear-cut relation between significant and high fold-change
genes, and hence LPE is required for such differentiation. Numbers shown in each sector of left panel represent the number of genes in that
sector.

that our LPE test performs similarly to severalM-estimators,
such as Huber, Hampel, and Tukey tests (e.g. Hampelet al.,
1986).

For convenience we here showed our results based on
a Bonferroni-adjustedp-values for controlling the FWER.
Such a Bonferroni-adjustment is most valid if all the can-
didate genes are independent. This is unlikely in microar-
ray data because many genes are believed to be loosely
or tightly co-regulated. In extensive simulations we found
the actual FWER by the Bonferroni-adjustedt-test to be
(0.011–0.023) compared to the desired FWER 0.05 under
various compound-symmetry correlation models (Jung and

Lee, submitted). From this and other studies the Bonferroni-
adjustment has been found to be conservative for discovering
differentially expressed genes in microarrays. An adjustment
based on ‘false discovery rate (FDR)’αf , which controls
the rate of false observations among all significant observa-
tions, may be more appropriate for genome-wide screening
of microarray experiments (Storey and Tibshirani, 2003;
Benjamini and Hochberg, 1995). This investigation is in
progress.

We note that even though we did not describe our LPE
approach here for two-color-based cDNA microarrays, this
method can be similarly applied for cDNA microarray data
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after careful within-array normalization in suitable designed
experiments.
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