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Tracking Leukocytes$n Vivo With Shape and Size
Constrained Active Contours

Nilanjan Ray Student Member, IEEEScott T. Actori, Senior Member, IEEEand Klaus Ley

Abstract—Inflammatory disease is initiated by leukocytes (white velocity under otherwise identical hemodynamic conditions
blood cells) rolling along the inner surface lining of small blood ves-  js indicative of weaker, fewer or shorter-lived bonds between
sels called postcapillary venules. Studying the number and velocity the rolling cell and the endothelial lining of the inflamed

of rolling leukocytes is essential to understanding and successfully blood L C ty th \vsis of rolli locities |
treating inflammatory diseases. Potential inhibitors of leukocyte ooa vessel. Lurrently the analysis of rolling velocities 1S

recruitment can be screened by leukocyte rolling assays and suc_laboriou_s and requires tens of hogrs of user—?nteractivg image
cessful inhibitors validated by intravital microscopy. In this paper, processing work after each experiment. Rolling velocity is a
we present an active contour or snake-based technique to automat- key predictor of inflammatory cell recruitment [4]. The most

ically track the movement of the leukocytes. The novelty of the pro- ,\yerful description of leukocyte rolling velocities is a velocity
posed method lies in the energy functional that constrains the shape distributi ferably for hundreds of cells [5
and size of the active contour. This paper introduces a significant istribution, preferably for hundreds of cells [5].

enhancement over existing gradient-based snakes in the form of a  In addition to its use in intravital microscopy, a robust and
modified gradient vector flow. Using the gradient vector flow, we automatic tracking algorithm would also expand the scope of
can track leukocytes rolling at high speeds that are not amenable flow chamber assays. A flow chamber [6] consists of a trans-
to tracking with the existing edge-based techniques. We also pro- o oyt harallel-plate apparatus perfused at low Reynolds num-
pose a new energy-based implicit sampling method of the points . .
on the active contour that replaces the computationally expensive P€rs to match wall shear stresses observed in blood veesels
explicit method. To enhance the performance of this shape and size Vivo. The vessel wall is modeled as an isolated protein sup-
constrained snake model, we have coupled it with Kalman filter so porting leukocyte rolling in a planar lipid bilayer [7] or directly
that during coasting (when the leukocytes are completely occluded jmmobilized on glass or plastic [8] or by endothelial cells grown

or obscured)_, the tracker may infer the location of the center of the on the lower plate of the flow chamber [9]. Centroid trackers are
leukocyte. Finally, we have compared the performance of the pro-

posed snake tracker with that of the correlation and centroid-based Successful attracking leukocytes rolling on transparent substrata
trackers. The proposed snake tracker results in superior perfor- like protein-coated plastic [8], but when rolled over endothelial
mance measures, such as reduced error in locating the leukocyte cells the tracking becomes difficult [10]. This difficulty is due to
under tracking and improvements in the percentage of frames suc- the structural clutter and obstructions introduced by the optical
cessfully trapked. For screening and drug ve}lldatlon, the tracker properties of the endothelial cells.

shows promise as an automated data collection tool. ) .

Flow chamber experiments are widely used to screen for
compounds that may inhibit leukocyte interaction with in-
flamed blood vessels. Glycotech, Inc. (Rockville, MD) offers a
single-channel flow chamber for such uses in drug screening.
I. INTRODUCTION More recently high-throughput approaches are being developed

RACKING leukocytesin vivo is becoming increasingly by using hydrodynamic focusingl (Ce.ITor, In_c., Santa Clara,

important among medical research groups that a@). In these system;, cells are wsughzed using phase contrast
studying inflammatory disease [1], [2]. Leukocyte rolling igNCroscopy, a technique that can yield a “bright” or “dark”
largely mediated by the selectin family of adhesion moleculd@@ge of the cell, dependent on the position of the focus
with contributions fromay integrins andg, integrins [1]. of the objective relative _to the rolling cell. These aqd other
Analysis of leukocyte rolling is an important tool in dis-approaches would benefit from a robust tracking algorithm that

covering potential novel anti-inflammatory treatments. Fd@n track leukocytes even in the presence of clutter, obstruction
example, E-selectin inhibitors have been shown to reduce @& change of focus. The most challenging application is
number and increase the velocity of rolling leukocytes in igtravital microscopy where rolling cells are observed in living

model of inflammation in living animals [3]. Increased rollingMcrovesselsit vivo) under conditions of inflammation. These
experiments add motion artifacts to the challenge of image

_ _ _ _ processing, and no currently existing algorithm is successful at
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ularly suitable for tracking cells that exhibit microbursts
in velocity [19].

We compare the performance of tracking with the proposed
method to that of centroid [20] and correlation [21], [22]
based tracker to show that tracking performance by the pro-
posed method improves upon that of the existing methods. To
compute the accuracy of the trackers, the leukocyte positions
computed by the automated trackers are compared to the
manually determined positions given by a single observer.

IFig. 1. (a)—( Consgcutive image subframes from a video sequence showing-l—he organization of the paper is as follows. In Section Il we
eukocyte movement in a mouse venule. . .

describe the necessary background for an active contour model

employed in tracking leukocytes vivo. We derive Euler equa-
sequences. For example, a rolling leukocyte appearing brightigns for different shape-size constrains in the active contour and
one frame might appear dark in a subsequent frame. This is a diéscribe the energy minimization for the sampling of the con-
ficult situation to tackle as both the contrast and the brightnegsir points. In Section Il we describe the use of Euler equa-
change simultaneously. In such situations, it is not even feasikisns for the constraints in the conventional snake evolution
to depend on the illumination invariant statistical moments [13paradigm. In Section IV, we present certain properties of the
So, we pursue an edge-based model here. The model explpitsposed snake model with shape/size constraints that are re-
the fact that the cell shapes are approximately circular/ellipégired in the leukocyte tracking application at hand. We also
and the scale of the leukocytes does not change significanitympare these properties with snakes without constraints. In
during the course of a video sequence. We have adopted anSeetion V, we have discussed two useful enhancements. In Sec-
tive contour based technique with shape and size constraintsion VI, we illustrate the capability of tracking leukocytes with
the contour model. the proposed snake model coupled with Kalman filtering tech-

The contributions of this work are as follows. nique. In Section VII, we compare the performance of the pro-

1) Anenergy functional has been designed for shape and spased snake-based tracker to that of the correlation and centroid
constraints, and the constraints have been derived throdggeker. Section VIII concludes this work.
the energy minimization principle for the active contours
in terms of geometric primitives such as circles and el- [l. BACKGROUND

lipses fromthe basic principles of the calculus of variations Active contours or snakes are parametric or nonparametric
[14], [15]. We have also shown thatthese constraints easg%sed or open curves that can move on the image plane an’d
fitthe cqn_ventional contc_)ur evolution techniqugs Withougapturé an object boundary [11]. Snakes have been employed
any addmonal pomputatlonal burQen. .Th.e. motivation b%r object tracking [23]-[25]. Other significant tracking work in-
hmd. the inclusion of the geometric prlmltlve sha}pe COMudes “Kalman snakes” [26] and another more general snake
str'alr)t IS that the leukocytes are approxmat'ely circular ‘i’échnique that handles non-Gaussian models [27]. Constraints
elliptic in shape. It has been shown experlmentall_y th r general shape have been introduced for active contour evo-
th.ese.constramts proveto be quite usgfullnthetracklng Btion by Lai and Chin in a statistical framework [28]. In this
p_I|cat|on a_t. hand that mvolves_severe image clutter,. OCdHé\per, we introduce circularity/elliptic shape and size constraints
sion, and jitter du_e t.o t_he motlon of the “V".]g SPeCIMen ;g incorporate the constraint into an active contour model. The
2) A new energy minimization based technique has beg tive contour energy is minimized using standard steepest de-

propqsed to handle th_e sampling and resampllng 8tent method and avoids computationally expensive techniques
the discrete contour points for the shape- and size-cqy);

trained del. Th d ina techni ich as dynamic programming [29]. As an application, we em-
strained model. Ihe proposed sampling technique oy a primitive (geometric) shaped snake to track the leukocytes
implicit in the snake model so that one does not ne€

- T vivoin venules found in the mouse cremaster (Fig. 1).
to explicitly sample the contour under evolution inter-

mittently as is presently done in conventional methog Snake Ener
of contour evolution. This implicit sampling technique oy
saves ar0(n) number of operations that are required in The snake evolution technique centers on minimizing an en-
resampling explicitly a contour with points. ergy functional (a cost functional) that is defined in terms of
3) The existing edge-based active contour tracking pose#g coordinates of the snake or the active contour and the image
limit on the speed of the leukocytes for a given videgata. Minimizing the energy functional, one obtains the snake
frame rate. We have introduced a technique by which w@sition that is desirable with respect to the defined constraints.
can track leukocytes moving at twice the speed previously€ proposed snake used for tracking leukocytes is a parametric
possible. Starting with the partial differential equatiognake [11] with specialized shape constraints tailored to the ap-
(PDE) based generalized gradient vector flow (GGVHication at hand. The total energy of the proposed snake can be
snake evolution [16], [17], we have shown that addingritten as follows:
a Dirichlet type boundary condition [18] on the basic
GGVF-PDE makes it possible to increase the maximuffisnake = A1 Eint + Aa Fext + Az Eshape
speed for successful tracking. This enhancement is partic- +A4Fsize + A5 Epos + A Fsampling (1)

(d)
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whereE;,; is the conventional internal energy of the snakg,, s € [0, 1], which is a reasonable assumption for a cell. (Note:
is the external or image energy [11], [16], [17], [3®snape. the energy functional developed in this paper is not valid for
Egize, Epos andEg.mpiing are, respectively, the shape, size, posbpen contours.) A snaxel within this snake has the coordinates
tion and sampling constraints and are defined in the subsequertt), y(s)). Let us further incorporate a terrthat denotes the
sections. The nonnegativeterms give the relative strengths ofensemble of:-coordinates of all the snaxels, i.&.~ [z(s)]7,

the respective energy components and are selected empiricall [0, 1]. Similarly we usey to denote all the,-coordinates

The exact weights used in our experiments are given in Set-all the snaxels. We can represent a snake with the compact
tion VII. Methods from variational calculus [14], [15] are em-otation &, y), and we now proceed to introduce the constraints
ployed to obtain Euler equations from (1) and then those equaxd the corresponding Euler equations.

tions are used to obtain the solution, i.e., the contour location.
D. Shape Constraint

B. Internal and External Energy Let Eshape Specify the energy term for shape constraint. If we

For the internal energy of the snake we have chosen thiize a circular shape for the cell&},,. is expressed as
“bending/stretching” energy term as described by Ketsal.
[11]. For the external energy we have adopted the GGVF field 1 [t _ 2
introduced by Xu and Prince [16], [17]. GGVF snakes havBshape(X, ¥) = 5/0 (Rz(s,2(5)) = R(x,y) cos (2ms))" ds
some advantages, such as the ability 1) to move the active
contour into thin and long object cavities, 2) to attract the active +
contour toward object edges from a sufficiently large distance,
and 3) to stop at the weak object edges. Other snakes such as — )
the pressure force snake [31] and the distance potential t%ﬁemR’(s"T(s))’ Ry(s,4(s)), andE(x, y) are defined as
snake [32] do not exhibit these desirable properties [16]. 1

In the following section, we introduce different constraints R.(s,x(s)) =x(s) — / x(r)dr
required for our application. 0

-1
%/0 (Ry(s,y(s)) = R(x,y)sin (27s))* ds  (2)

1
C. Shape, Size, Position, and Sampling Constraints Ry(s,y(s)) =y(s) - /O y(r)dr

The leukocytes to be tracked maintain an approximately el- _ 1
liptic shape [10], which is circular in the simplest case. In addi- R(x,y) = / \/Rr(sv 2(5))? + Ry(s,y(5))%ds. (3)
tion, the leukocytes do not vary significantly in size from image 0
frame to frame in the video sequences. These facts call for Cgre energy term (2) penalizes the deviation of the curve from
tain shape and size constraints on the snake that can be ugefircle, which has a mean radidg(x,y) and a center at
to capture the cells in each of the frames. In the processthé center of mass (CM) of the curve. The energy functional
tracking, the cells often are occluded by tissue or by other celiscpressed is indeed amenable to the analysis in a continuous
For this reason we need to predict the cell (leukocyte) centerflamework given the assumptions of the continuity on the curve,
the frames undegoasting(when we have temporarily “lost” the and all the integrands defined in (2) and (3) are continuous
cell). Along with the shape/size constraints we need a predictgad integrable. To obtain the snake position that minimizes the
position for the snake during coasting, which is embedded #nstraint energy (2), we use the calculus of variations [15] and

the snake position constraint. As for a comparison, in a prarrive at the following two Euler equations (see Appendix for
vious work by Satcet al. the leukocyte tracking is performedthe derivation)

by leukocyte trace determination through the generation of spa-
tiotemporal images. Then, the broken leukocyte trace is inter- R.(s,2(s))
polated with a motion constraint [33]. Instead, here, we use the Ry (s,y(s))
direct motion information (available from tracker) for motion A
prediction in case of coasting. .

One important aspect of parametric snake evolution is the dé: equivalently, as
cretization of the continuous contour. These discrete points on

— R(x,y) cos(2ms) =0
— R(x,y)sin(2ms) =0

1
the snake are calleshaxelsDuring the course of evolution the x(s) — / z(r)dr — R(x,y) cos(2ms) =0
snhaxels either grow apart or come close to each other. To avoid 0 .
nonuniform sample spacing, one needs to resample the contour / ir—T .
. . . S - - , 27s) =0. 4
intermittently during the evolution. Unfortunately the resam- y() 0 y(r)dr (x,y) sin(2ms) @

pling process represents a significant computational expense.
We have introduced an active contour model that eliminates thelving (4) forz(s) andy(s) one obtains the snake position that
need for the explicit resampling and reparameterization of tR@nimizes (2).
shaxels. The resultant addition to the snake energy functional is )
referred to as theampling constraint E. Size Constraint

We now present the shape, size, and position constraints irThe shape constraint alone does not adequately describe the
continuous framework. Let us require that the snake is a clodedkocytes. We will show experimentally, in a subsequent sec-
contour characterized by the continuous valued parameti@n, that both the size and the shape constraints are necessary
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for the tracking application. The size constraint is incorporatésl. Position Constraint
as the deviation of the average radidéx, y) from the initial As discussed, we want the CM of the evolving snake to be

radius. The energy functional is as follows close to a predicted center positioR,( P,). So, the deviation
1 of the snake center from this desired center is penalized and,
Eguo(x,y) = 3 (R(;Qy) — K)2 (5) hence, the contribution to the snake energy functional is

2

1 1
whereK is the expected radius atx, y) is as defined in (3). Epos(x,y) = ) (/0 (s)ds — Pm)
The Euler equations that characterize the solutioiy} to min- '

1
imize (5) are given as follows (derivation given in Appendix ): _|_% (/ y(s)ds — Py> 9)
— 1 Jo
(R(x,y) — K)(2(s) = [y =(r)dr) -0 and the corresponding Euler equations are as follows (derivation
\/RZ( ,x(s)) + R2(s,y(s )) given in Appendix ):
55} 1 1
(B(x,y) = K)(y(s) fo ") :0. (6) / x(s)ds — P, = 0 and / y(s)ds — P, = 0. (10)
VR (s.2(s)) + B (5. (s)) Jo Jo

H. Sampling Constraint

F. Elliptic Shape Constraint To implement active contour evolution, one needs to derive

Using an elliptic shape model results in a more versatile shagpe discrete model from the continuous framework of con-
model at the cost of a more complicated energy term. An ellipgsurs. Implementation in the discrete domain is performed
has an orientation, whereas a circle has no orientation. Here, bye choosing a number of ordered points from the contour,
do not allow the snake shape to deviate significantly from an &le that these points can approximately represent the entire
lipse. This naturally gives rise to the energy functional shown gontinuous contour. The continuous parametarsed so far
(7) at the bottom of the page, wheftés the orientation of the to denote the snake point position(§),y(s)) is indexed by
semimajor axis of the ellipse with theaxis,; andr, are the i € {0,1,...n — 1}, with n being the total number of snaxels
two radii of the ellipse, and, andc, are the center coordinatesin the snake. So, we have a discrete contour point or snaxel
So, itis clear from the formulation that we penalize the snake ifaks ¢;, v;). Employing vector notation we can write the snaxel
deviates from the best-fitted ellipse. Now, the obvious questignsitions collectively asx, y), where this time for the discrete
arises: how do we compute the best-fitted ellipse? Finding thersion,x = [z¢,...2,-1]7 andy = [yo,..-Yn-1]T. In
best-fitted ellipse for a set of data points is a classical problegeneral, during the snake evolution, some portion of the snake
in pattern recognition and can be handled in a number of waydll be stretched while the other portion will be shortened. So,
[34], [35], [36]. A previous work [10] fits ellipse to the edgecompression as well as rarefaction of the snaxels occurs during
points (chosen by thresholding the gradient magnitude) in desolution. These actions require a resampling of the contour
tecting leukocytesn vivo. Instead, we employ the nonitera-under evolution. This resampling is usually done explicitly by
tive, fast, direct least squares method of [36]. Once we obtajhoosing sample points uniformly during the snake evolution
the values of the intermediate parameteéts:[,c,,r1,72] as [16]. The cost of such explicit sampling @(n), with n being
[0%, ¢}, ¢, 1, 73] by the direct least squares technique, the neie number of snaxels.
task is to obtain Euler equations from the functional (7) and we In this paper, we propose an implicit sampling technique for
give them as follows (see derivation in the Appendix ): the parameterization of contours in contrast to the explicit pa-
rameterization method in practice. The idea of implicit param-

z(s) = €z — 11 cos(2ms — 6%) cos(67) eterization is merely to keep approximately uniform contour

+75 sin(27s — %) sin(6*) =0 sampling along the snake. For the application at hand, this is
y(s) — ¢, — ] cos(2ms — 0%) sin(6") quite suitable as the target shape for the snake is approximately
1% sin(2ms — %) cos(6*) =0. 8) circular/elliptic. So, we introduce a term in the energy functional

that makes a snaxel maintain equal distance from its immediate
If 1 = ro, i.e. if the ellipse is a circle, then (8) reduces to theeft and right neighboring snaxels on the contour. The advantage
already derived (4) for circular shapes. of such a technique is avoiding the resampling intermittently

1

9,%,1@131%1,132 [2
X ./0 ((2(s) — ¢a) cos(0) + (y(s) — ¢, ) sin(0) — 1 cos(2ws — 0))”

+ (=(z(s) — cx) sin(B) + (y(s) — ¢,) cos(6) — rysin(2ws — ) ds} (7)

Eellipse <X7 y) =
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during snake evolution. The energy functional will now force  Ill. DISCRETIZATION AND IMPLEMENTATION OF THE
the snake to maintain proper distance between sampled snaxels. EULER EQUATIONS

So far, we have <_jefined allthe energy terms in the_ Continuous\Ne show that the derived Euler equations for different con-
;ramtg Worlkt. Ss mé)ll?g, gowev%rl, req;ur(fes the asio?zlated enﬁ&%ﬁints fit the conventional snake implementation seamlessly.
unctional 1o be defined on a discrete r'amet\{\llor - FOI SAMPIRSs indeed an interesting point to note that all the Euler equa-
(snaxels) on a circular contour, tH#8 and(i-+1)"" snaxel main- tions derived so far are linear. This is in agreement with the

tain the following relationships: spirit of the original snake evolution equation derived by Kass

_ 2 _ om(i+ 1) et al. [11]. This property makes it very easy to incorporate all
Ti — Tit1 =lcos <_> — Rcos <7> the constraints stated so far in the conventional snake evolution
. . technique.
Yi — Yiy1 =Rsin <@> — Rsin <L<L + U) The steepest descent technique for evolving snakes gives the
. " " following equations:
1i=0,...,n—1 (11)
0 0
o t+1 _ t 7 t+1 _ ot
whereR is the average radius of the snake, as already defined i x = 3XESﬂake andy y = dy FEsnake (18)

(3). Also, we note that,, = z¢ andy,, = yo. We now introduce

the following energy functional: where the superscrigtand¢ + 1 denote the successive time

steps. Following an implicit or backward time difference dis-

1t ) . cretization method for numerical stability [18] on (18), one ob-
Eampling = 3 Z (i — ip1 — d7)" 4+ (yi — yigy1 — dY) tains the update or evolution equation as [11], [30]
=0
) (12) X =(A+ 1) (x4 p(xy"))
where the vectorg? andd? are shorthand for the right-hand t+1 —1/t t ot
X 1 . 2 = A I . 1
sides of (11) and are written as Y (A+ D7 +alxy7) (19)
B o B 2m(i+1) where &*,y") denoten snaxels of the snake at iterationI
di =R cos (—) — Rcos <7> is the n-by- n identity matrix, A is an-by-n pentadiagonal,
2". ) K . positive—definite stiffness matrix. For a closed snake, it takes
d’ =Rsin <ﬂ> — Rsin (M) ) (13) the form [30]
n n
¢ b «a a b7
Equation (12) can be written in the following matrix-vector b ¢ b a
form: a b ¢ b a
. . ) A= | (20)
Esampling = §XTHX + gyTHy - XTGd - yTGdy a b c b a
Lo\ gx Ly Ty a a b ¢
+2(d)d+2(d)d (14) b a a b ]
whered* andd¥ are defined as and p(x',y"),q(x’,y")) is the external force vector at the

N S e T ay o — snaxel locationsx, y*) at thet*? iteration. The external force
a* = [dg,dy,....dy o] dY =[dg,dy,....dy4]7 (19) s obtained typically from image gradient or GGVF [17].
To incorporate the shape, size, and position constraints, the
following changes are made to the snake evolution (19).
r2 -1 -1 1) Once the parameteris indexed byi, (4) can be dis-
-1 2 -1 cretized for the" snaxel. As there are such equation
H= pairs forn snaxels, we can write them out in the ma-

1 2 1 trix-vector form and compute the gradient for the shape

1 1 9 constraint energy

and H andG aren-by-—n matrices as follows:

[ 1 -1 V Eghape =(x — X — Re, y —y — Rs), where

o — [+ T

-1 1 lei%?:%zyl

-1 1

mn
. , : : 2ri\ 17 o 2ni\1T
The energy is in the quadratic form, so one can now easily obtain c=lecos 222 ands = |sin [ =— with
the gradient of the energy functional as follows: n n

_ 1=
o 0 R== R;

V Esampling = <8_x g) . n ;
Eampling = (Hx — Gd*, Hy — GdY). 17) andR; :\/(xi —7T)2 + (y; —y)2 wherei =0,...,n— 1.

’
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By a similar implicit method of discretization as per-
formed obtaining (19) from (18), we incorporate the O ”) @} @
shape constraint in the snake evolution (19) as outlinec
here: \; is added to each of the diagonal elements of
A of (19), and\3*(Z + Rcos(2mi/n)) is added to the
ith element ofp in (19) andA3*(y + Rsin(2mi/n)) is  Fig.2. (a) Synthetic circle. (b) Same image showing a portion of the full circle.
added to thet® element ofq in (19). (c) Result (in White)_of GGVF s_nake evolution on (b). (d) Result (in white) of

2) For the size constraint (6)4*@ l xl)*(ﬁ _ K)/RZ and GGVF snake evolution along with shape and size constraints.
\ix(7 —y:)*(R — K)/R; are added to th&"® element of
p andq, respectively.

3) For position constraint (10)z*(P, —T) andAs (P, —7)
are added to each of the elementp@indq, respectively. §

4) The elliptic constraint (8) is incorporated in a similar
way—the relative weight of the energy functional;pse
is added to each of the diagonal elementsgiaif (19).

(@) (b () (@

. N 271 . . Fig. 3. (a) Leukocytedn vivo. (b) Result of GGVF snake evolution on (a).
/\cllipso*(cx +rycos| — — 0 COS(9 ) (c) Result of GGVF snake evolution along with shape and size constraints on
n (a). Initial and final snakes are shown in white and black.

. 271 .
—r3 sin (— - 9*) sin(6*))
n A. Comparison With Snakes Having No Constraints
With experimental results, we show here that for the applica-
tion at hand, the shape and size constraints are requisite. This
. w0 % 2mi 0\ sin(6* model makes use of theepriori knowledge about the size and
ellipse*(¢y + 77 €08 n sin(6") the shape of the leukocytes. Xu and Prince have established that
. . (2w . . the GGVF type snake outperforms many other kinds of external
+73 sIn <7 — 0 ) cos(6")) energy models such as the gradient, pressure force [31], and dis-
tance force [32] snakes in capturing objects [16]. So, we select
is added to theé'® element ofq of (19). (p(xt,¥),q(xt,y?)) appearing in (19) as the GGVF type ex-
5) Finally, we incorporate the parameterization energy tert@rnal force in the proposed snake model.
very easily in the snake evolution equation. Equation The synthetic experimental results show that the shape and
(17) and (18) suggest that we add the mafpdd [H size constraints are very much required in capturing a leukocyte
defined in (16)] to the positive—definite matrik of (19) in vivo. Figs. 2 and 3 illustrate the potential of the shape and
following an implicit method of discretization [18]. It is size constraints, respectively, in a synthetic and in a real envi-
interesting to note that addition ofs/ still leavesA  ronment. Fig. 2(a) and (b) are, respectively, the synthetic circle
as a positive definite matrix a# itself is a nonnega- and the occluded circle image. Fig. 2(c) shows that without the
tive—definite matrix. This guarantees the stability in theonstraints the GGVF snake fails to form a round shape from
matrix inversion involved in the evolution (19). Furtherthe part of the existing round shape. Fig. 2(d) shows that with
more, we add the vectoksd* to the vectorp and, shape and size constraints the round shape is correctly recov-
similarly, AsGd” to q. ered. The next set of figures proves the same point in reality.
Itis indeed interesting to note that steps 1)-5) do not changgy. 3(a) shows several rolling leukocyt@svivo. The GGVF
the positive—definite property of the matriX ¢ I), so that one snakes without shape and size constraints cannot recover the
can invert it by making use of Cholesky decomposition [37] fafe|| shape [Fig. 3(b)]. On the other hand, when coupled with

solving the snake (19). Furthermore, as the number of snaxglgpe and size constraints the cell-shape is correctly recovered
remains constant during the snake evolution (because of the jigy 3(c)].

plicit sampling constraint) the matrix needs to be inverted just
one time. B. Usefulness of Both the Shape and the Size Constraints

For the leukocyte tracking application, the size or the shape
constraint alone does not suffice. The following examples show

This section describes certain properties of the propostdt both the shape and size constraints are equally important.
snake model. These properties prove to be quite useful for trig. 4(a) shows four leukocytes in an image frame. Fig. 4(b)
leukocyte tracking application. We start with the comparisshows that the snake fails to lock onto a cell when only shape
with snakes with no shape or size constraints. We also sh@aeffective. Fig. 4(c) reveals that the snake does not capture the
experimentally that both the shape and the size constraints saene cell properly when only size constraint is in effect. On
necessary for tracking leukocytes. It is also demonstrated ttfa¢ other hand, Fig. 4(d) shows that the cell is captured properly
the snake initialization does not have to be very close to thden both size and shape constraints are acting. In all these three
leukocyte boundary to capture the cell. cases, the initial snake positions are the same.

is added to the'® element ofp and

IV. PROPERTIES OF THEPROPOSEDSNAKE MODEL
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) © (4 Fig. 6. (a) Evolving a snake on Fig. 5(a) with final and initial snakes shown in
Fig. 4. (a) Leukocytes from a video sequence. (b) Snake evolution with oriack and white, respectively. (b) After Step 2) of multistage snake evolution.
shape constraint on (a). (c) Snake evolution with size constraint only. (d) SndkgAfter Step 3). (d) After Step 4).
evolution with both shape and size constraints. In all these three cases the
underlying external force is GGVF. The initial and the final snakes are shown
in white and black.

(a) () (@

Fig. 5. (a) A leukocyte. Snake evolution with the initial snake to the left (b),
right (c), bottom (d), and top (e) of the leukocyte. In all these four cases, the (a) o)

initial snake is shown in white and the final snake position is shown in black._ . .
Fig. 7. (a) Maximum frame-to-frame displacement of a leukocyte under

GGVF snake tracking. (b) GGVF field.

C. Insensitivity to Initial Snake Position
The cell boundary capturing process, to agreat extent, isinsenStep 4) (stage three): Increase the shape and size weight in

sitive to the initial snake position as the following experiments the snake model and evolve the snake until conver-
show. Fig. 5(a) shows the cell to be captured. The Fig. 5(b)—(e) gence on the GGVF force field starting from the po-
show different initialization (in white) of the snake for the same sition obtained at the end of Step 3).

leukocyte. The same figures also show that snake evolution withThe effectiveness of the approach is illustrated in Fig. 6. In
GGVF along with the shape and size constraints leading to shap@- 6(P), the snake starts with the same initial condition as in
recovery (black contours). These figures illustrate the fact tHz#8- 6(@) shown in white. Fig. 6(b) also shows the end of stage 1

as to some extent the initialization of the snake can be variPlack. In Fig. 6(c), the start (white) and end (black) of second
and one can still obtain the desired cell. stage evolution is shown where the snake starts with its position

taken from Fig. 6(b). Similarly in Fig. 6(d), the third and final
stage of evolution result is shown. We now observe in Fig. 6(d)

. ~ that the snake has correctly locked onto the cell, as shown by
Certain enhancements prove to be for the application @fe plack contour.

tracking leukocytesn vivo. This section describes the tech-
nigues that aid in the capture of leukocyte boundaries. B. Increasing the Maximum Allowed Speed of Cells in
Tracking

V. ENHANCEMENTS

A. Multistage Snake Evolution Approach We have chosen GGVF [17] as the external force for the snake

Fig. 6(a) demonstrates the failure of the snake to capture #gsed tracking, as GGVF allows the initial contour position to
cell when the initial snake is away from the actual boundaryeviate from the cell edge position. One of the shortcomings
The evolution sequence [with initial contours shown in whitgf the GGVF external force is that unless the initial snake in-
in Fig. 6(a)] shows that final evolved circle is formed near thgludes the medial axis of the object, the snake does not capture
initial contour CM. This bias toward the initial CM can be overthe object [38]. Fig. 7(a) shows the initial snake (white circular
come by a multistage snake evolution. In the multistage snagntour) and a synthetic rolling leukocyte (solid black) with an
evolution process, the snake is evolved in the first stage agrow giving the direction of the cell movement. Corresponding
cording to the GGVF forces. After the snake evolution in thg) this cell the GGVF force is shown in the Fig. 7(b). We notice
first stage, the snake clings to the object boundary and possitHyt the GGVF is directed toward the boundary of the synthetic
to some clutter. In the next stage, the relative weights for tlg|l. If the initial snake does not contain the medial axis, which,
shape and size constraints are increased. In summary the migtihis case, is the center of the circle [as in Fig. 7(b)], the ex-
stage algorithm for an image frame may be stated as followsternal force field will force the snake to collapse on one side of

Step 1) Compute GGVF field for the current frame within ghe cell boundary.

window around the center of the cell in the previous A common practice in active contour based tracking is to
frame. use the position of the captured object from the previous frame

Step 2) (stage one): Eliminate shape and size constraint frasithe initial snake for the subsequent frame [27]. So, if one

the snake model and evolve the snake only using thiees GGVF for the external force in object edge-based tracking
GGVF field until convergence. with this initialization strategy, then the maximum cell move-
Step 3) (stage two): Reinstate the shape and the size corent from one frame to the next frame is less than the radius of
straint in the snake model and evolve the snake dhe leukocyte. Beyond this maximum displacement the GGVF
the GGVF field until convergence starting from thesnake will fail to capture the object. To overcome this difficulty
snhake position obtained at the end of Step 2). we have imposed a Dirichlet type boundary condition (BC) on
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VI. METHODS TRACKING LEUKOCYTESIN VIVO

We now give the procedure for tracking leukocytesvivo
with the proposed snake. In a given frame of a video sequence,
a user selects a leukocyte he/she wishes to track over the rest
of the sequence. This is the only point where the user inter-
action is required. Experimentally, for most leukocytes, if the
: user-selected center is within 3—4 pixels of the actual leukocyte
(@) center then the snake captures the leukocyte correctly. The user
Fig. 8. (a). Maximum displacement in tracking with the proposed BGactually places a small circular contour (typically, a circle with
(b) Corresponding external force field. half the cell radius) on the leukocyte to be tracked. This initial
contour is then allowed to evolve on the first image frame with
the elliptic or circular shape and size constraints. In addition for
capturing the leukocyte in the first frame an enhanced GGVF as
described in Section V is utilized. This time the GGVF is ob-
tained by setting the Dirichlet BC as the unit outward normal
to the initial contour. This makes the tracking procedure quite
robust to the initial user interaction, as the initial contour placed
by the user does not necessarily have to include the cell center;
(& instead the initial contour should only be within the leukocyte
Fig. 9. (a) GGVF snake is drifting away from the cell and getting stuck iboundary [38]. In the next frame, we use this computed snake
et 5 ek s s o i) eg oo e e s gsiion for nitialization. However, rom the second fame on-
initial aynd the' final positions are sh’own in black and tF;]e intermediate positio rds for a fastrolling leukocyte the velocity direction becomes
are shown in gray. the Dirichlet BC as described previously.

The rolling leukocytes often are occluded for a number
the GGVF-PDE. Let the region bounded by the initial snake lveasons. For a few frames, the cell may be hidden under other
C with boundarydC and let the rectangular image domain béukocytes and tissue structures, or it may leave the focal
D, with boundany D. If the estimated leukocyte center velocityplane. Given possible occlusion and given that there are other
direction isv then the GGVF-PDE along with our proposed B&ells/clutter present near the rolling leukocyte being tracked,
can be written as (21), shown at the bottom of the page, whéhe snake may encompass the incorrect object. So, we need to
(u,v) isthe GGVF field to be solved from (21} ,is the edgemap validate the resultant snake on each frame. Such a validation
for the imagel[16]: f = |VI|?, k is a positive parameter con-technique has another very important use. The proposed method
trolling the smoothness [17]. utilizes gradient descent and, thus, can become locked onto

Adding the boundary condition based on the initial positiothe local minima in the energy functional. These suboptimal
of the snake to the PDE makes it possible to capture the csdlutions may, in some cases, correspond to false acquisition
in cases where the initial snake that does not encompass theakleukocytes. We employ a straightforward technique for the
center. In doing so, we assume that the size of the leukocyte dpagpose of validation: matching the shape of the present snake
not significantly decrease from frame to frame, as this conditiavith that of the snake on the previous frame. Our experiments
could lead to missing a smaller cell that is contained inside thave shown that for the particular application at hand, graylevel
initial snake. A synthetic example is given in Fig. 8(a), showinmatching/correlation fails as the cells and the surrounding have
a synthetic cell (solid black), an initial snake (white circulasimilar graylevel values. There is another technical difficulty
contour), and the direction of cell movement. Fig. 8(b) shows théth graylevel matching for this particular application. As the
corresponding GGVF obtained from (21). As seen in Fig. 8()hange in refractive index between the surrounding flow and the
the force field directs the snake toward the cell boundary. Figc@lls is being used to encode the graylevel, a cell may transform
illustrates the efficacy of this Dirichlet type BC on capturing thérom brighter to darker in appearance iceversainstanta-
leukocyte in arin vivo image. neously. Such changes render graylevel correlation ineffective.

(u(z,y),v(r,y)) = v, when(z,y) €9C
A (u(z,y),v(x,y)) ngp = 0, when(z,y) €9D (21)
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(a) (b}

{d) (e)

Fig. 12. Video sequence. (a) Normal tracking; (b) coasting starts; (c) coasting

continues; (d) coasting terminates. (e) The snake reacquires the cell after
coasting. White and black contours show initial and final snakes, respectively,

{c) (d) in each frame. Dotted lines depict coasting.

the snake from previous frame overlaid. (c) Shape template correspondin %Ity assump'gpn. _In case of coasting, the Kalman fllter predicts
the overlaid snake of (b). (d) GGVF of (a). he snake position in the next frame. We place the previous snake

in the next frame as predicted by the Kalman filter. Kalman filter
gains are experimentally set for the leukocyte tracking applica-
tion by means of extensive training on such sequences.

A coasting example is shown in Fig. 12(a)—(e), where the ef-
fectiveness of the Kalman filter is demonstrated. The leukocyte
observed here coasts for three consecutive frames. Dotted black
contours show coasting, and solid black contours show that the
snake has locked onto the cell when it is no longer coasting.
Once coasting commences, we want CM of the final snake not
to be much deviated from the position predicted by the Kalman
filter. So, the position constraint is used here.

Fig. 10. (a) Leukocyte from a video sequence. (b) The same Ieukocytevq

(e} ® (g)

VII. TRACKING RESULTS

Fig. 11. (a)-(g). Video sequence showing seven frames. In each frame, th ; ; ; ; ; _
white contour is the initial snake and the black contour is the final snake orGin this section, we give the results of traCkmg with the pro

the captured leukocyte. This is an example where the snake tracks a partipsed shape/size constrained snake model. We also compare
occluded cell. these results with correlation and centroid trackers. To com-
pute the error in tracking we utilize interactively determined

We use “shape correlation” between a shape template &l positions. Next, we apply all three trackers on the same
the acquired active contour. The shape template is formed frafleo sequences to track the same cell and compare to the stored
the shape of the snake that encompasses the cell in the @il center positions. The video frames were recorded at a spa-
vious frame. Let %, y) denote the evolved snake position irfial resolution of 320« 240 pixels (where the pixel-to-micron
the previous frame. We can drawcksed p0|ygomn a p|ane ratio is 3.11 pixels/micron in the horizontal direction and 3.10
with (x, y), which results in a binary image. The shape tenfixels/micron in the vertical direction) and a temporal resolu-
plate is simply the gradient of this binary image. So, the shafien of 30 frames per second. No preprocessing was performed
template is a vector, not a scalar, template. We correlate the ri@i-the frames before tracking. We provide two types of error
malized (unit magnitude) GGVF field of the current frame witfineasures for tracking.
the shape template. For example, Fig. 10(a) shows a leukocytel) Root mean square errdRMSH of the tracked cell center
and Fig. 10(b) shows the snake from the previous frame overlaid  positions in microns. The RMSE is computed over all the
on the image of Fig. 10(a). The shape template for the overlaid framesinatrackingvideo sequence. Manually determined
shake is shown in Fig. 10(c). Fig. 10(d) reveals the normalized cell positions are used to compute the position error.
GGVF field arising from Fig. 10(a) that is to be correlated with 2) Percentage of frames trackeld a computed cell center
the shape template. is within one cell radius of the manually observed cell

In the example shown in Fig. 11(a)—(g), we demonstrate that  center, then we consider that frame as “tracked.” The per-
the proposed snake can track a partially occluded rolling leuko-  centage is computed as the ratio of number of frames
cyte. Here, the shape and size constraints facilitate the inference tracked to the total number of frames in the sequence.
of an occluded cell boundary. We have tracked two types of sequences: TiNffeated and

Another implementation concern in tracking is the coastingntreated sequences. The sequences with &NEated vessels
phase. If a cell coasts for quite a few frames, then the snake needpibit slower rolling (slower cell velocities). The untreated ves-
finally lose track. To tackle this situation, we utilize a Kalmarsels contain leukocytes rolling rapidly (up to 1@®/s) and are,
filter [39]. The filter that is employed here uses the constant virus, more challenging to track. These sequences are 31 to 167
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on ,4‘ Centroid M Correlation H Snake 1

RMSE in microns

Sequences

Fig. 13. Comparison of the position RMSEs in tracking the treated vessel sequences with the three trackers.

120 } Centroid W Correlation W Snake }

%o of frames tracked

Sequences

Fig. 14. Comparison of the percentages of frames tracked in the treated sequences.

80
70 I Centroid m Correlation B Snake I

RMSE in microns

Sequences

Fig. 15. Position RMSE in sequences obtained from untreated venules.

120 } Centroid m Correlation W Snake }

%o of frames tracked

Sequences

Fig. 16. Percentage of frames tracked in untreated sequences.

frames in duration at 30 frames per second. We set a maximthme resulting percentage is 98.89%. Our current implementation
number of frames based on the maximum cell velocity and thequires a maximum of 1 s per video frame in computational
available field of view. Our experience shows that typical rollingxpense using a 1.5-GHz, Pentium IV PC.

leukocytes that are not adherent are visible for 1-3 s with a fixedFigs. 15 and 16 show similar performance comparisons in the
field of view of approximately 10@:m in width. The values of untreated vessel sequences. Because of the rapid rolling of the
the weight parameters used in (1) for the experiments are sells, the tracking task is more difficult in this case, and the dif-
as:d; =0, = 2,3 =4,y = 4,5 = 0.2, \¢ = 10. ficulty is reflected in the performance of all three trackers. The
Fig. 13 shows the comparison of RMSE in all three methodsake tracker significantly outperforms the other two trackers
on 16 treated video sequences. RMSE values with snake trackéine average frames tracked for the snake tracker is over eight
are seen to be quite low compared to the RMSE with the othetandard deviations above the mean for the centroid tracker (in
two trackers. Fig. 14 shows the percentage of frames trackedms of the standard deviation for the centroid tracker). For
in the 16 treated vessel sequences. The snake tracker is se¢he@orrelation tracker, the average frames tracked by the snake
have tracked 100% of the frames in all but one sequence wheaxker is almost three standard deviations above the correlation
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TABLE |
COMPARISON OFTRACKER PERFORMANCES INTERMS OFAVERAGE AND STANDARD DEVIATIONS OF THE RMSES AND THE PERCENTAGES OFFRAMES TRACKED

Standard
Standard Average
Average Deviation of
Sequence Type Tracking Method Deviation of % Frames
RMSE % Frames
RMSE'’s Tracked
(microns) (microns) Tracked
Snake 0.5 0.2 99.9 0.3
Treated Correlation 4.9 5.1 61.2 355
Centroid 6.2 3.0 39.0 19.3
Snake 4.6 6.2 744 334
Correlation 34.3 204 141 21.3
Untreated
Centroid 33.3 17.9 13.1 6.8
tracker mean. In Table | we have listed the average and stan- APPENDIX

dard deviations of RMSE measures as well as the percentageﬁere, we derive the Euler equations for the shape, size, and

of frames tracked, separately for the treated and untreated vid@Qiion constraints from the basic principle of calculus of vari-

Sequences. ations [14], [15]. In the derivation, we make use of the following
two results from integral calculus. They appear as a lemma and
VIIl. CONCLUSION as a corollary in [14] along with proofs.

This paper has introduced a shape and size constrained snaké&mma 1 (du BO|sb—Reymond) [14]f the function/ is con-
model that has been successfully used in tracking leukoaytedinuous ong, bland [, h(s)(dv(s)/dt)ds = 0, for all functions
vivo. We have derived the evolution equations for the proposé&daving continuous first derivative im[b] with the boundary
contour model from the very basic principles of calculus dfonditions,u(a) = v(b) = 0, thenh is constant ond, b].
variations. An energy-based scheme has been proposed th&torollary 1 [14]: If the functiong is continuous ond, t]
eliminates the need for resampling of the parametric snaﬂ_@dfa, g(s)u(s)ds = 0, for all functionsv having continuous
during evolution. The novelty in the proposed methods also li&st derivative in [, b] with the boundary conditions;(a) =
in the fact that all the derived shape constraint equations as wiéft) = 0. theng(s) = 0 on [a, b].
as the resampling equations perfectly fit into the conventionRI
linear snake evolution equation. We have also enhanced the ] ) o )
tracking performance by modifying GGVF-PDEs with Dirichlet 10 obtain the first variation of the energy functional (2) we
boundary conditions. This modification has increased tf{g/low the procedure of [15]. Thus, we consider a small neigh-
tracking capability in terms of reducing the frame rate or equif?°'h00d €1u, e2v) of the contour X, y), whereu is vector of
alently increasing the velocity of leukocytes. Kalman filtering i&(%) termhs whereu(s) : mh_) R, aﬁd%5|m||;f|y,\;] is vector con-
used to provide coasting of occluded leukocytes. Finally we h nn:j%_t e’zr(]s) te_rrr;]sb, where;(s) ' T o+ wheres IE [O’tl]‘
compared the leukocyte tracking performance of the propos Y adding n€ neighbornoo (1, e2v) to the original contour

. X, y) we obtain a variation of the energy functional (2), and we

method with the performance of two standard methods and th S/ ; ; ;

. - may think of it as a function of; ande,; see (22), as shown at
comparisons show the superiority of the proposed method ji o s :
¢ f th ber of f tracked and th iti the bottom of the page. In finding the variation of (2) with re-
erms ot tne number of frames tracked and the position Pfrrgfiect to the active contoux (y), the necessary conditions are
Our new method, therefore, will be useful for tracking rolling ’
Ieu!<ocytesin vivo fqr drug validation, as well as for track_ing OBy (e1,e9)
rolling leukocytes in flow chamber systems that are widely T e,
used for screening for novel anti-inflammatory compounds.

Euler Equations for the Shape Constraint

01 (e1,e9)

e1=0, ez €1=0,

e0=0 €0=0

=0, =0. (23)

1

Dy (e1,62) = (Ru(s,2(s) + e1u(s)) — R(x + e1u,y + €2v) cos(27r3))2 ds

+

N | =
o= S

/0 (Ry(s,y(s) + e2v(s)) — R(x + e1u,y + €2v) sin(27rs))2 ds. (22)
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Applying (23) to (22), we obtain

0= [ (Ralo.0(6) - Tl y) con2es)) () s

OR(x +e1u,y + e2v)
861

51=0,
e0=0

1
</0 [Ry(s,y(s)) — R(x,y) cos(2ms)] cos(2ms)ds
1 =Y . .
+/0 [Ry(s,y(s)) — R(x,y)sin(2rs)] Sln(27rs)ds> }
(24)
where the functionu(s) is defined via

dw(s) !
I —u(s)—/o u(r)dr

s 1
w(s) :/0 w(r)dr — 8/0 u(r)dr 4+ constant (25)

To obtain the Euler equations, we first prove that the sum of

second and third integrals in (24) is zero. Let us rewfite, y)
asR(x,y) = fol R(s,z(s),y(s))ds , whereR(s,x(s),y(s)) is

?

defined byR(s, z(s),y(s)) = \/R2(s,xz(s)) + R2(s,y(s)) or

equivalently byR,.(s,z(s)) = R(s,z(s),y(s))cos(2ws) and

R, (s,y(s)) = R(s,(s), y(s)) sin(2rs).

With this redefinition, the sum of the last two integrals of (24)

can be written as
| (G000, 005)) = R ) cos? 2ms) e

1
'/0 (R(s,z(s),y(s)) — R(x,y)) sin2(27rs)ds =

./0 R(s,z(s),y(s))ds—R(x,y) =O0.

So, (24) takes a simplified form

'/0.1 (Ru(s,2(s)) — R(x,y) cos(2ms)) (i—f) ds = 0. (26)

1233

Applying a similar strategy, the necessary conditions for ob-
taining Euler equations are

8@2(51,62) -0 8(1)2(51,82) —0 (28)
861 61:0, 7 862 51:0, .
Now, applying (28) to (27), one finds that
8(1)2 (51, 82) _
861 e1=0,
(R(x,y) 3 K) OR(x + %u,y +e9v) (29)
61 €1 =0,
From (29), we find that
OR(x +e1u,y +e2v)
(951 -
/1 R (s,z(s) + slu(s))df’l—gs) p
S,
Joo\[R2(s,2(s) + e1u(s)) + B (s,y(s) + £20(s))
(30)

where all terms in (30) are already defined in (3) and (25). Fi-
nally, imposing the conditions; = 0 andes = 0, we obtain

OR(x + e1u,y + 2v)
861

/1 Ra(s,a(s)) 2t
0 \/Rg(s,x(s))-i-Rg(&y(S))

ds. (31)

Now, substituting (31) into (29), we obtain

8'1>2 (51762)
861

= (E(X'/ y) - K)

R (s, (s))Lel)

(i)
N ? s ds|. (32)
0 \/Rg(s, x(s)) + R2(s,y(s))

At this point, we are able to apply Lemma 1 to (26) if we left this point, by applying Lemma 1, we can obtain one Euler

h(s) = R.(s,z(s)) — R(x,y) cos(2ms) andv(s) = w(s) pro-

equation. The other Euler equation is derived in a similar way

vided the functionu(s) meets the prescribed conditions in thég complete (6).
Lemma 1. Equation (25) indeed suggests @) is continuous
and WLOG:w(0) = w(1) = 0. Thus, we apply Lemma 1 to C. Euler Equations for the Elliptic Shape Constraint

find that R, (s, z(s)) — R(x,y) cos(27s) is aconstant, yielding — £or the derivation of the Euler equations of (7), we form
the first Euler equation in (4). The second equation in (4) {e following new function taking into account the variation
found in a similar way. of the contour %, y) in a small neighborhood characterized by
(e1u, e2v); see (33), as shown at the top of the next page. As be-

] ) fore, the necessary conditions for the existence of extrema are
To obtain the Euler equation for (5) we proceed the same Wa¥ follows:

as we have done before for the shape constraint. Considering the
variation of the contourx, y) in a small neighborhood charac-
terized by €1u, e5v), we derive a new function af; ande, as

B. Euler Equations for the Size Constraint

8@4(51,62)
861

8(1)4(51. 82)
D2, 0. (34

1 — 2
Pz (er,e2) = 5 (R(x+eu,y+e2v) —K)".  (27) Applying (34) on (33), we obtain the two Euler equations in (8).
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1

0

Dy(e1,e2) :% ((z + e1u— ) cos(6*) + (y + eav — c,)sin(f*) — r] cos(2ms — 9*))2
+

(—(z +e1u— ) sin(0*) + (y + e2v — ¢

“)cos(8%) — 15 sin(2rs — 6%))° ds). (33)

D. Euler Equations for the Position Constraint )]

Applying the same kind of variation on (9), we compute a
function ofe; ande, as before
2

1/t [10]
D3 (e1,62) = 3 </ x(s) + equ(s)ds — P_T,>
J0
1 2
-l-% (/ y(s) + eav(s)ds — Py> . (35 M
J0
12
For an extremum, the necessary conditions are 12l
O®3(e1,¢€2) o, 0P3(e1,¢€2) —o. (36) 013
851 81=0, 852 81=0, [14]
Applying (36) on (35), we obtain (18]
8@3(81,62) [16]
e €1=0, [17]
1 ’ 1 [18]
= z(8)ds — P, /usds>:0
(f tme=r) ([ w00
OP3(e1,e2) [20]
861 £1=0,
o [21]

The application of Corollary 1 to (37) leads to the Euler equa-
tions in (10).

[23]
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