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Tracking LeukocytesIn Vivo With Shape and Size
Constrained Active Contours

Nilanjan Ray, Student Member, IEEE, Scott T. Acton�, Senior Member, IEEE, and Klaus Ley

Abstract—Inflammatory disease is initiated by leukocytes (white
blood cells) rolling along the inner surface lining of small blood ves-
sels called postcapillary venules. Studying the number and velocity
of rolling leukocytes is essential to understanding and successfully
treating inflammatory diseases. Potential inhibitors of leukocyte
recruitment can be screened by leukocyte rolling assays and suc-
cessful inhibitors validated by intravital microscopy. In this paper,
we present an active contour or snake-based technique to automat-
ically track the movement of the leukocytes. The novelty of the pro-
posed method lies in the energy functional that constrains the shape
and size of the active contour. This paper introduces a significant
enhancement over existing gradient-based snakes in the form of a
modified gradient vector flow. Using the gradient vector flow, we
can track leukocytes rolling at high speeds that are not amenable
to tracking with the existing edge-based techniques. We also pro-
pose a new energy-based implicit sampling method of the points
on the active contour that replaces the computationally expensive
explicit method. To enhance the performance of this shape and size
constrained snake model, we have coupled it with Kalman filter so
that during coasting (when the leukocytes are completely occluded
or obscured), the tracker may infer the location of the center of the
leukocyte. Finally, we have compared the performance of the pro-
posed snake tracker with that of the correlation and centroid-based
trackers. The proposed snake tracker results in superior perfor-
mance measures, such as reduced error in locating the leukocyte
under tracking and improvements in the percentage of frames suc-
cessfully tracked. For screening and drug validation, the tracker
shows promise as an automated data collection tool.

Index Terms—Active contours, cell tracking, inflammatory dis-
ease, leukocytes, video microscopy.

I. INTRODUCTION

T RACKING leukocytesin vivo is becoming increasingly
important among medical research groups that are

studying inflammatory disease [1], [2]. Leukocyte rolling is
largely mediated by the selectin family of adhesion molecules
with contributions from integrins and integrins [1].
Analysis of leukocyte rolling is an important tool in dis-
covering potential novel anti-inflammatory treatments. For
example, E-selectin inhibitors have been shown to reduce the
number and increase the velocity of rolling leukocytes in a
model of inflammation in living animals [3]. Increased rolling
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velocity under otherwise identical hemodynamic conditions
is indicative of weaker, fewer or shorter-lived bonds between
the rolling cell and the endothelial lining of the inflamed
blood vessel. Currently the analysis of rolling velocities is
laborious and requires tens of hours of user-interactive image
processing work after each experiment. Rolling velocity is a
key predictor of inflammatory cell recruitment [4]. The most
powerful description of leukocyte rolling velocities is a velocity
distribution, preferably for hundreds of cells [5].

In addition to its use in intravital microscopy, a robust and
automatic tracking algorithm would also expand the scope of
flow chamber assays. A flow chamber [6] consists of a trans-
parent parallel-plate apparatus perfused at low Reynolds num-
bers to match wall shear stresses observed in blood vesselsin
vivo. The vessel wall is modeled as an isolated protein sup-
porting leukocyte rolling in a planar lipid bilayer [7] or directly
immobilized on glass or plastic [8] or by endothelial cells grown
on the lower plate of the flow chamber [9]. Centroid trackers are
successful at tracking leukocytes rolling on transparent substrata
like protein-coated plastic [8], but when rolled over endothelial
cells the tracking becomes difficult [10]. This difficulty is due to
the structural clutter and obstructions introduced by the optical
properties of the endothelial cells.

Flow chamber experiments are widely used to screen for
compounds that may inhibit leukocyte interaction with in-
flamed blood vessels. Glycotech, Inc. (Rockville, MD) offers a
single-channel flow chamber for such uses in drug screening.
More recently high-throughput approaches are being developed
by using hydrodynamic focusing (CelTor, Inc., Santa Clara,
CA). In these systems, cells are visualized using phase contrast
microscopy, a technique that can yield a “bright” or “dark”
image of the cell, dependent on the position of the focus
of the objective relative to the rolling cell. These and other
approaches would benefit from a robust tracking algorithm that
can track leukocytes even in the presence of clutter, obstruction
and change of focus. The most challenging application is
intravital microscopy where rolling cells are observed in living
microvessels (in vivo) under conditions of inflammation. These
experiments add motion artifacts to the challenge of image
processing, and no currently existing algorithm is successful at
tracking rolling leukocytesin vivo.

In this paper, we present an active contour or snake [11] based
tracking of the leukocytes from video sequences. As an ex-
ample, a portion of a video sequence is shown in Fig. 1. The
imaging technology and thein vivo experimental setup have
been described in [12]. As a result of the mismatch of refrac-
tory indices of the rolling cell and the surrounding plasma, con-
trast/intensity change/reversal occurs quite often in such video

0278-0062/02$17.00 © 2002 IEEE



RAY et al.: TRACKING LEUKOCYTES IN VIVO 1223

Fig. 1. (a)–(f) Consecutive image subframes from a video sequence showing
leukocyte movement in a mouse venule.

sequences. For example, a rolling leukocyte appearing bright in
one frame might appear dark in a subsequent frame. This is a dif-
ficult situation to tackle as both the contrast and the brightness
change simultaneously. In such situations, it is not even feasible
to depend on the illumination invariant statistical moments [13].
So, we pursue an edge-based model here. The model exploits
the fact that the cell shapes are approximately circular/elliptic
and the scale of the leukocytes does not change significantly
during the course of a video sequence. We have adopted an ac-
tive contour based technique with shape and size constraints on
the contour model.

The contributions of this work are as follows.

1) An energy functional has been designed for shape and size
constraints, and the constraints have been derived through
the energy minimization principle for the active contours
in terms of geometric primitives such as circles and el-
lipses fromthebasicprinciplesof thecalculusofvariations
[14], [15]. We have also shown that these constraints easily
fit the conventional contour evolution techniques without
any additional computational burden. The motivation be-
hind the inclusion of the geometric primitive shape con-
straint is that the leukocytes are approximately circular or
elliptic in shape. It has been shown experimentally that
theseconstraintsprove tobequiteuseful in the trackingap-
plication at hand that involves severe image clutter, occlu-
sion, and jitter due to the motion of the living specimen.

2) A new energy minimization based technique has been
proposed to handle the sampling and resampling of
the discrete contour points for the shape- and size-con-
strained model. The proposed sampling technique is
implicit in the snake model so that one does not need
to explicitly sample the contour under evolution inter-
mittently as is presently done in conventional method
of contour evolution. This implicit sampling technique
saves an number of operations that are required in
resampling explicitly a contour with points.

3) The existing edge-based active contour tracking poses a
limit on the speed of the leukocytes for a given video
frame rate. We have introduced a technique by which we
can track leukocytes moving at twice the speed previously
possible. Starting with the partial differential equation
(PDE) based generalized gradient vector flow (GGVF)
snake evolution [16], [17], we have shown that adding
a Dirichlet type boundary condition [18] on the basic
GGVF-PDE makes it possible to increase the maximum
speed for successful tracking. This enhancement is partic-

ularly suitable for tracking cells that exhibit microbursts
in velocity [19].

We compare the performance of tracking with the proposed
method to that of centroid [20] and correlation [21], [22]
based tracker to show that tracking performance by the pro-
posed method improves upon that of the existing methods. To
compute the accuracy of the trackers, the leukocyte positions
computed by the automated trackers are compared to the
manually determined positions given by a single observer.

The organization of the paper is as follows. In Section II we
describe the necessary background for an active contour model
employed in tracking leukocytesin vivo. We derive Euler equa-
tions for different shape-size constrains in the active contour and
describe the energy minimization for the sampling of the con-
tour points. In Section III we describe the use of Euler equa-
tions for the constraints in the conventional snake evolution
paradigm. In Section IV, we present certain properties of the
proposed snake model with shape/size constraints that are re-
quired in the leukocyte tracking application at hand. We also
compare these properties with snakes without constraints. In
Section V, we have discussed two useful enhancements. In Sec-
tion VI, we illustrate the capability of tracking leukocytes with
the proposed snake model coupled with Kalman filtering tech-
nique. In Section VII, we compare the performance of the pro-
posed snake-based tracker to that of the correlation and centroid
tracker. Section VIII concludes this work.

II. BACKGROUND

Active contours or snakes are parametric or nonparametric,
closed, or open curves that can move on the image plane and
capture an object boundary [11]. Snakes have been employed
for object tracking [23]–[25]. Other significant tracking work in-
cludes “Kalman snakes” [26] and another more general snake
technique that handles non-Gaussian models [27]. Constraints
for general shape have been introduced for active contour evo-
lution by Lai and Chin in a statistical framework [28]. In this
paper, we introduce circularity/elliptic shape and size constraints
and incorporate the constraint into an active contour model. The
active contour energy is minimized using standard steepest de-
scent method and avoids computationally expensive techniques
such as dynamic programming [29]. As an application, we em-
ploy a primitive (geometric) shaped snake to track the leukocytes
in vivoin venules found in the mouse cremaster (Fig. 1).

A. Snake Energy

The snake evolution technique centers on minimizing an en-
ergy functional (a cost functional) that is defined in terms of
the coordinates of the snake or the active contour and the image
data. Minimizing the energy functional, one obtains the snake
position that is desirable with respect to the defined constraints.
The proposed snake used for tracking leukocytes is a parametric
snake [11] with specialized shape constraints tailored to the ap-
plication at hand. The total energy of the proposed snake can be
written as follows:

(1)
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where is the conventional internal energy of the snake,
is the external or image energy [11], [16], [17], [30], ,

, and are, respectively, the shape, size, posi-
tion and sampling constraints and are defined in the subsequent
sections. The nonnegativeterms give the relative strengths of
the respective energy components and are selected empirically.
The exact weights used in our experiments are given in Sec-
tion VII. Methods from variational calculus [14], [15] are em-
ployed to obtain Euler equations from (1) and then those equa-
tions are used to obtain the solution, i.e., the contour location.

B. Internal and External Energy

For the internal energy of the snake we have chosen the
“bending/stretching” energy term as described by Kasset al.
[11]. For the external energy we have adopted the GGVF field
introduced by Xu and Prince [16], [17]. GGVF snakes have
some advantages, such as the ability 1) to move the active
contour into thin and long object cavities, 2) to attract the active
contour toward object edges from a sufficiently large distance,
and 3) to stop at the weak object edges. Other snakes such as
the pressure force snake [31] and the distance potential type
snake [32] do not exhibit these desirable properties [16].

In the following section, we introduce different constraints
required for our application.

C. Shape, Size, Position, and Sampling Constraints

The leukocytes to be tracked maintain an approximately el-
liptic shape [10], which is circular in the simplest case. In addi-
tion, the leukocytes do not vary significantly in size from image
frame to frame in the video sequences. These facts call for cer-
tain shape and size constraints on the snake that can be used
to capture the cells in each of the frames. In the process of
tracking, the cells often are occluded by tissue or by other cells.
For this reason we need to predict the cell (leukocyte) center in
the frames undercoasting(when we have temporarily “lost” the
cell). Along with the shape/size constraints we need a predicted
position for the snake during coasting, which is embedded in
the snake position constraint. As for a comparison, in a pre-
vious work by Satoet al. the leukocyte tracking is performed
by leukocyte trace determination through the generation of spa-
tiotemporal images. Then, the broken leukocyte trace is inter-
polated with a motion constraint [33]. Instead, here, we use the
direct motion information (available from tracker) for motion
prediction in case of coasting.

One important aspect of parametric snake evolution is the dis-
cretization of the continuous contour. These discrete points on
the snake are calledsnaxels. During the course of evolution the
snaxels either grow apart or come close to each other. To avoid
nonuniform sample spacing, one needs to resample the contour
intermittently during the evolution. Unfortunately the resam-
pling process represents a significant computational expense.
We have introduced an active contour model that eliminates the
need for the explicit resampling and reparameterization of the
snaxels. The resultant addition to the snake energy functional is
referred to as thesampling constraint.

We now present the shape, size, and position constraints in
continuous framework. Let us require that the snake is a closed
contour characterized by the continuous valued parameter

, which is a reasonable assumption for a cell. (Note:
the energy functional developed in this paper is not valid for
open contours.) A snaxel within this snake has the coordinates
( ). Let us further incorporate a termthat denotes the
ensemble of -coordinates of all the snaxels, i.e., ,

. Similarly we use to denote all the -coordinates
of all the snaxels. We can represent a snake with the compact
notation ( ), and we now proceed to introduce the constraints
and the corresponding Euler equations.

D. Shape Constraint

Let specify the energy term for shape constraint. If we
utilize a circular shape for the cells, is expressed as

(2)

where , , and are defined as

(3)

The energy term (2) penalizes the deviation of the curve from
a circle, which has a mean radius and a center at
the center of mass (CM) of the curve. The energy functional
expressed is indeed amenable to the analysis in a continuous
framework given the assumptions of the continuity on the curve,
and all the integrands defined in (2) and (3) are continuous
and integrable. To obtain the snake position that minimizes the
constraint energy (2), we use the calculus of variations [15] and
arrive at the following two Euler equations (see Appendix for
the derivation)

or, equivalently, as

(4)

Solving (4) for and one obtains the snake position that
minimizes (2).

E. Size Constraint

The shape constraint alone does not adequately describe the
leukocytes. We will show experimentally, in a subsequent sec-
tion, that both the size and the shape constraints are necessary
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for the tracking application. The size constraint is incorporated
as the deviation of the average radius from the initial
radius. The energy functional is as follows

(5)

where is the expected radius and is as defined in (3).
The Euler equations that characterize the solution () to min-
imize (5) are given as follows (derivation given in Appendix ):

(6)

F. Elliptic Shape Constraint

Using an elliptic shape model results in a more versatile shape
model at the cost of a more complicated energy term. An ellipse
has an orientation, whereas a circle has no orientation. Here, we
do not allow the snake shape to deviate significantly from an el-
lipse. This naturally gives rise to the energy functional shown in
(7) at the bottom of the page, whereis the orientation of the
semimajor axis of the ellipse with the-axis, and are the
two radii of the ellipse, and and are the center coordinates.
So, it is clear from the formulation that we penalize the snake if it
deviates from the best-fitted ellipse. Now, the obvious question
arises: how do we compute the best-fitted ellipse? Finding the
best-fitted ellipse for a set of data points is a classical problem
in pattern recognition and can be handled in a number of ways
[34], [35], [36]. A previous work [10] fits ellipse to the edge
points (chosen by thresholding the gradient magnitude) in de-
tecting leukocytesin vivo. Instead, we employ the nonitera-
tive, fast, direct least squares method of [36]. Once we obtain
the values of the intermediate parameters [ ] as
[ ] by the direct least squares technique, the next
task is to obtain Euler equations from the functional (7) and we
give them as follows (see derivation in the Appendix ):

(8)

If , i.e. if the ellipse is a circle, then (8) reduces to the
already derived (4) for circular shapes.

G. Position Constraint

As discussed, we want the CM of the evolving snake to be
close to a predicted center position ( ). So, the deviation
of the snake center from this desired center is penalized and,
hence, the contribution to the snake energy functional is

(9)

and the corresponding Euler equations are as follows (derivation
given in Appendix ):

and (10)

H. Sampling Constraint

To implement active contour evolution, one needs to derive
the discrete model from the continuous framework of con-
tours. Implementation in the discrete domain is performed
by choosing a number of ordered points from the contour,
so that these points can approximately represent the entire
continuous contour. The continuous parameterused so far
to denote the snake point position ( ) is indexed by

, with being the total number of snaxels
in the snake. So, we have a discrete contour point or snaxel
as ( ). Employing vector notation we can write the snaxel
positions collectively as ( ), where this time for the discrete
version, and . In
general, during the snake evolution, some portion of the snake
will be stretched while the other portion will be shortened. So,
compression as well as rarefaction of the snaxels occurs during
evolution. These actions require a resampling of the contour
under evolution. This resampling is usually done explicitly by
choosing sample points uniformly during the snake evolution
[16]. The cost of such explicit sampling is , with being
the number of snaxels.

In this paper, we propose an implicit sampling technique for
the parameterization of contours in contrast to the explicit pa-
rameterization method in practice. The idea of implicit param-
eterization is merely to keep approximately uniform contour
sampling along the snake. For the application at hand, this is
quite suitable as the target shape for the snake is approximately
circular/elliptic. So, we introduce a term in the energy functional
that makes a snaxel maintain equal distance from its immediate
left and right neighboring snaxels on the contour. The advantage
of such a technique is avoiding the resampling intermittently

(7)
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during snake evolution. The energy functional will now force
the snake to maintain proper distance between sampled snaxels.

So far, we have defined all the energy terms in the continuous
framework. Sampling, however, requires the associated energy
functional to be defined on a discrete framework. For samples
(snaxels) on a circular contour, the and snaxel main-
tain the following relationships:

(11)

where is the average radius of the snake, as already defined in
(3). Also, we note that and . We now introduce
the following energy functional:

(12)
where the vectors and are shorthand for the right-hand
sides of (11) and are written as

(13)

Equation (12) can be written in the following matrix-vector
form:

(14)

where and are defined as

(15)

and and are -by- matrices as follows:

...
...

.. .

. . .
. . .

. . . (16)

The energy is in the quadratic form, so one can now easily obtain
the gradient of the energy functional as follows:

(17)

III. D ISCRETIZATION AND IMPLEMENTATION OF THE

EULER EQUATIONS

We show that the derived Euler equations for different con-
straints fit the conventional snake implementation seamlessly.
It is indeed an interesting point to note that all the Euler equa-
tions derived so far are linear. This is in agreement with the
spirit of the original snake evolution equation derived by Kass
et al. [11]. This property makes it very easy to incorporate all
the constraints stated so far in the conventional snake evolution
technique.

The steepest descent technique for evolving snakes gives the
following equations:

and (18)

where the superscriptand denote the successive time
steps. Following an implicit or backward time difference dis-
cretization method for numerical stability [18] on (18), one ob-
tains the update or evolution equation as [11], [30]

(19)

where ( ) denote snaxels of the snake at iteration,
is the -by- identity matrix, is a -by- pentadiagonal,
positive–definite stiffness matrix. For a closed snake, it takes
the form [30]

...
...

. . .
. . .

. . . (20)

and ( ) is the external force vector at the
snaxel locations ( ) at the iteration. The external force
is obtained typically from image gradient or GGVF [17].
To incorporate the shape, size, and position constraints, the
following changes are made to the snake evolution (19).

1) Once the parameter is indexed by , (4) can be dis-
cretized for the snaxel. As there are such equation
pairs for snaxels, we can write them out in the ma-
trix-vector form and compute the gradient for the shape
constraint energy

where

and with

and where



RAY et al.: TRACKING LEUKOCYTES IN VIVO 1227

By a similar implicit method of discretization as per-
formed obtaining (19) from (18), we incorporate the
shape constraint in the snake evolution (19) as outlined
here: is added to each of the diagonal elements of

of (19), and is added to the
element of in (19) and is

added to the element of in (19).
2) For the size constraint (6), and

are added to the element of
and , respectively.

3) For position constraint (10), and
are added to each of the elements ofand , respectively.

4) The elliptic constraint (8) is incorporated in a similar
way—the relative weight of the energy functional
is added to each of the diagonal elements ofof (19).

is added to the element of and

is added to the element of of (19).
5) Finally, we incorporate the parameterization energy term

very easily in the snake evolution equation. Equation
(17) and (18) suggest that we add the matrix [
defined in (16)] to the positive–definite matrix of (19)
following an implicit method of discretization [18]. It is
interesting to note that addition of still leaves
as a positive definite matrix as itself is a nonnega-
tive–definite matrix. This guarantees the stability in the
matrix inversion involved in the evolution (19). Further-
more, we add the vector to the vector and,
similarly, to .

It is indeed interesting to note that steps 1)–5) do not change
the positive–definite property of the matrix ( ), so that one
can invert it by making use of Cholesky decomposition [37] for
solving the snake (19). Furthermore, as the number of snaxels
remains constant during the snake evolution (because of the im-
plicit sampling constraint) the matrix needs to be inverted just
one time.

IV. PROPERTIES OF THEPROPOSEDSNAKE MODEL

This section describes certain properties of the proposed
snake model. These properties prove to be quite useful for the
leukocyte tracking application. We start with the comparison
with snakes with no shape or size constraints. We also show
experimentally that both the shape and the size constraints are
necessary for tracking leukocytes. It is also demonstrated that
the snake initialization does not have to be very close to the
leukocyte boundary to capture the cell.

Fig. 2. (a) Synthetic circle. (b) Same image showing a portion of the full circle.
(c) Result (in white) of GGVF snake evolution on (b). (d) Result (in white) of
GGVF snake evolution along with shape and size constraints.

Fig. 3. (a) Leukocytesin vivo. (b) Result of GGVF snake evolution on (a).
(c) Result of GGVF snake evolution along with shape and size constraints on
(a). Initial and final snakes are shown in white and black.

A. Comparison With Snakes Having No Constraints

With experimental results, we show here that for the applica-
tion at hand, the shape and size constraints are requisite. This
model makes use of thea priori knowledge about the size and
the shape of the leukocytes. Xu and Prince have established that
the GGVF type snake outperforms many other kinds of external
energy models such as the gradient, pressure force [31], and dis-
tance force [32] snakes in capturing objects [16]. So, we select
( ) appearing in (19) as the GGVF type ex-
ternal force in the proposed snake model.

The synthetic experimental results show that the shape and
size constraints are very much required in capturing a leukocyte
in vivo. Figs. 2 and 3 illustrate the potential of the shape and
size constraints, respectively, in a synthetic and in a real envi-
ronment. Fig. 2(a) and (b) are, respectively, the synthetic circle
and the occluded circle image. Fig. 2(c) shows that without the
constraints the GGVF snake fails to form a round shape from
the part of the existing round shape. Fig. 2(d) shows that with
shape and size constraints the round shape is correctly recov-
ered. The next set of figures proves the same point in reality.
Fig. 3(a) shows several rolling leukocytesin vivo. The GGVF
snakes without shape and size constraints cannot recover the
cell shape [Fig. 3(b)]. On the other hand, when coupled with
shape and size constraints the cell-shape is correctly recovered
[Fig. 3(c)].

B. Usefulness of Both the Shape and the Size Constraints

For the leukocyte tracking application, the size or the shape
constraint alone does not suffice. The following examples show
that both the shape and size constraints are equally important.
Fig. 4(a) shows four leukocytes in an image frame. Fig. 4(b)
shows that the snake fails to lock onto a cell when only shape
is effective. Fig. 4(c) reveals that the snake does not capture the
same cell properly when only size constraint is in effect. On
the other hand, Fig. 4(d) shows that the cell is captured properly
when both size and shape constraints are acting. In all these three
cases, the initial snake positions are the same.
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Fig. 4. (a) Leukocytes from a video sequence. (b) Snake evolution with only
shape constraint on (a). (c) Snake evolution with size constraint only. (d) Snake
evolution with both shape and size constraints. In all these three cases the
underlying external force is GGVF. The initial and the final snakes are shown
in white and black.

Fig. 5. (a) A leukocyte. Snake evolution with the initial snake to the left (b),
right (c), bottom (d), and top (e) of the leukocyte. In all these four cases, the
initial snake is shown in white and the final snake position is shown in black.

C. Insensitivity to Initial Snake Position

Thecell boundarycapturing process, toa great extent, is insen-
sitive to the initial snake position as the following experiments
show. Fig. 5(a) shows the cell to be captured. The Fig. 5(b)–(e)
show different initialization (in white) of the snake for the same
leukocyte. The same figures also show that snake evolution with
GGVF along with the shape and size constraints leading to shape
recovery (black contours). These figures illustrate the fact that
as to some extent the initialization of the snake can be varied
and one can still obtain the desired cell.

V. ENHANCEMENTS

Certain enhancements prove to be for the application of
tracking leukocytesin vivo. This section describes the tech-
niques that aid in the capture of leukocyte boundaries.

A. Multistage Snake Evolution Approach

Fig. 6(a) demonstrates the failure of the snake to capture the
cell when the initial snake is away from the actual boundary.
The evolution sequence [with initial contours shown in white
in Fig. 6(a)] shows that final evolved circle is formed near the
initial contour CM. This bias toward the initial CM can be over-
come by a multistage snake evolution. In the multistage snake
evolution process, the snake is evolved in the first stage ac-
cording to the GGVF forces. After the snake evolution in the
first stage, the snake clings to the object boundary and possibly
to some clutter. In the next stage, the relative weights for the
shape and size constraints are increased. In summary the multi-
stage algorithm for an image frame may be stated as follows.

Step 1) Compute GGVF field for the current frame within a
window around the center of the cell in the previous
frame.

Step 2) (stage one): Eliminate shape and size constraint from
the snake model and evolve the snake only using the
GGVF field until convergence.

Step 3) (stage two): Reinstate the shape and the size con-
straint in the snake model and evolve the snake on
the GGVF field until convergence starting from the
snake position obtained at the end of Step 2).

Fig. 6. (a) Evolving a snake on Fig. 5(a) with final and initial snakes shown in
black and white, respectively. (b) After Step 2) of multistage snake evolution.
(c) After Step 3). (d) After Step 4).

Fig. 7. (a) Maximum frame-to-frame displacement of a leukocyte under
GGVF snake tracking. (b) GGVF field.

Step 4) (stage three): Increase the shape and size weight in
the snake model and evolve the snake until conver-
gence on the GGVF force field starting from the po-
sition obtained at the end of Step 3).

The effectiveness of the approach is illustrated in Fig. 6. In
Fig. 6(b), the snake starts with the same initial condition as in
Fig. 6(a) shown in white. Fig. 6(b) also shows the end of stage 1
in black. In Fig. 6(c), the start (white) and end (black) of second
stage evolution is shown where the snake starts with its position
taken from Fig. 6(b). Similarly in Fig. 6(d), the third and final
stage of evolution result is shown. We now observe in Fig. 6(d)
that the snake has correctly locked onto the cell, as shown by
the black contour.

B. Increasing the Maximum Allowed Speed of Cells in
Tracking

We have chosen GGVF [17] as the external force for the snake
based tracking, as GGVF allows the initial contour position to
deviate from the cell edge position. One of the shortcomings
of the GGVF external force is that unless the initial snake in-
cludes the medial axis of the object, the snake does not capture
the object [38]. Fig. 7(a) shows the initial snake (white circular
contour) and a synthetic rolling leukocyte (solid black) with an
arrow giving the direction of the cell movement. Corresponding
to this cell the GGVF force is shown in the Fig. 7(b). We notice
that the GGVF is directed toward the boundary of the synthetic
cell. If the initial snake does not contain the medial axis, which,
in this case, is the center of the circle [as in Fig. 7(b)], the ex-
ternal force field will force the snake to collapse on one side of
the cell boundary.

A common practice in active contour based tracking is to
use the position of the captured object from the previous frame
as the initial snake for the subsequent frame [27]. So, if one
uses GGVF for the external force in object edge-based tracking
with this initialization strategy, then the maximum cell move-
ment from one frame to the next frame is less than the radius of
the leukocyte. Beyond this maximum displacement the GGVF
snake will fail to capture the object. To overcome this difficulty
we have imposed a Dirichlet type boundary condition (BC) on
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Fig. 8. (a). Maximum displacement in tracking with the proposed BC.
(b) Corresponding external force field.

Fig. 9. (a) GGVF snake is drifting away from the cell and getting stuck in
clutter. (b) The snake with Dirichlet BC is approaching and capturing the
leukocyte (b). In both these cases, the initial snake positions are the same, the
initial and the final positions are shown in black and the intermediate positions
are shown in gray.

the GGVF-PDE. Let the region bounded by the initial snake be
with boundary, and let the rectangular image domain be
, with boundary . If the estimated leukocyte center velocity

direction is then the GGVF-PDE along with our proposed BC
can be written as (21), shown at the bottom of the page, where
( ) is the GGVF field to be solved from (21),is the edgemap
for the image [16]: , is a positive parameter con-
trolling the smoothness [17].

Adding the boundary condition based on the initial position
of the snake to the PDE makes it possible to capture the cell
in cases where the initial snake that does not encompass the cell
center. In doing so, we assume that the size of the leukocyte does
not significantly decrease from frame to frame, as this condition
could lead to missing a smaller cell that is contained inside the
initial snake. A synthetic example is given in Fig. 8(a), showing
a synthetic cell (solid black), an initial snake (white circular
contour), and the direction of cell movement. Fig. 8(b) shows the
corresponding GGVF obtained from (21). As seen in Fig. 8(b),
the force field directs the snake toward the cell boundary. Fig. 9
illustrates the efficacy of this Dirichlet type BC on capturing the
leukocyte in anin vivo image.

VI. M ETHODS: TRACKING LEUKOCYTES IN VIVO

We now give the procedure for tracking leukocytesin vivo
with the proposed snake. In a given frame of a video sequence,
a user selects a leukocyte he/she wishes to track over the rest
of the sequence. This is the only point where the user inter-
action is required. Experimentally, for most leukocytes, if the
user-selected center is within 3–4 pixels of the actual leukocyte
center then the snake captures the leukocyte correctly. The user
actually places a small circular contour (typically, a circle with
half the cell radius) on the leukocyte to be tracked. This initial
contour is then allowed to evolve on the first image frame with
the elliptic or circular shape and size constraints. In addition for
capturing the leukocyte in the first frame an enhanced GGVF as
described in Section V is utilized. This time the GGVF is ob-
tained by setting the Dirichlet BC as the unit outward normal
to the initial contour. This makes the tracking procedure quite
robust to the initial user interaction, as the initial contour placed
by the user does not necessarily have to include the cell center;
instead the initial contour should only be within the leukocyte
boundary [38]. In the next frame, we use this computed snake
position for initialization. However, from the second frame on-
wards for a fast rolling leukocyte the velocity direction becomes
the Dirichlet BC as described previously.

The rolling leukocytes often are occluded for a number
reasons. For a few frames, the cell may be hidden under other
leukocytes and tissue structures, or it may leave the focal
plane. Given possible occlusion and given that there are other
cells/clutter present near the rolling leukocyte being tracked,
the snake may encompass the incorrect object. So, we need to
validate the resultant snake on each frame. Such a validation
technique has another very important use. The proposed method
utilizes gradient descent and, thus, can become locked onto
the local minima in the energy functional. These suboptimal
solutions may, in some cases, correspond to false acquisition
of leukocytes. We employ a straightforward technique for the
purpose of validation: matching the shape of the present snake
with that of the snake on the previous frame. Our experiments
have shown that for the particular application at hand, graylevel
matching/correlation fails as the cells and the surrounding have
similar graylevel values. There is another technical difficulty
with graylevel matching for this particular application. As the
change in refractive index between the surrounding flow and the
cells is being used to encode the graylevel, a cell may transform
from brighter to darker in appearance orvice-versa instanta-
neously. Such changes render graylevel correlation ineffective.

when

when

when (21)
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Fig. 10. (a) Leukocyte from a video sequence. (b) The same leukocyte with
the snake from previous frame overlaid. (c) Shape template corresponding to
the overlaid snake of (b). (d) GGVF of (a).

Fig. 11. (a)-(g). Video sequence showing seven frames. In each frame, the
white contour is the initial snake and the black contour is the final snake or
the captured leukocyte. This is an example where the snake tracks a partially
occluded cell.

We use “shape correlation” between a shape template and
the acquired active contour. The shape template is formed from
the shape of the snake that encompasses the cell in the pre-
vious frame. Let ( , ) denote the evolved snake position in
the previous frame. We can draw aclosed polygonon a plane
with ( , ), which results in a binary image. The shape tem-
plate is simply the gradient of this binary image. So, the shape
template is a vector, not a scalar, template. We correlate the nor-
malized (unit magnitude) GGVF field of the current frame with
the shape template. For example, Fig. 10(a) shows a leukocyte
and Fig. 10(b) shows the snake from the previous frame overlaid
on the image of Fig. 10(a). The shape template for the overlaid
snake is shown in Fig. 10(c). Fig. 10(d) reveals the normalized
GGVF field arising from Fig. 10(a) that is to be correlated with
the shape template.

In the example shown in Fig. 11(a)–(g), we demonstrate that
the proposed snake can track a partially occluded rolling leuko-
cyte. Here, the shape and size constraints facilitate the inference
of an occluded cell boundary.

Another implementation concern in tracking is the coasting
phase. If a cell coasts for quite a few frames, then the snake may
finally lose track. To tackle this situation, we utilize a Kalman
filter [39]. The filter that is employed here uses the constant ve-

Fig. 12. Video sequence. (a) Normal tracking; (b) coasting starts; (c) coasting
continues; (d) coasting terminates. (e) The snake reacquires the cell after
coasting. White and black contours show initial and final snakes, respectively,
in each frame. Dotted lines depict coasting.

locity assumption. In case of coasting, the Kalman filter predicts
the snake position in the next frame. We place the previous snake
in the next frame as predicted by the Kalman filter. Kalman filter
gains are experimentally set for the leukocyte tracking applica-
tion by means of extensive training on such sequences.

A coasting example is shown in Fig. 12(a)–(e), where the ef-
fectiveness of the Kalman filter is demonstrated. The leukocyte
observed here coasts for three consecutive frames. Dotted black
contours show coasting, and solid black contours show that the
snake has locked onto the cell when it is no longer coasting.
Once coasting commences, we want CM of the final snake not
to be much deviated from the position predicted by the Kalman
filter. So, the position constraint is used here.

VII. T RACKING RESULTS

In this section, we give the results of tracking with the pro-
posed shape/size constrained snake model. We also compare
these results with correlation and centroid trackers. To com-
pute the error in tracking we utilize interactively determined
cell positions. Next, we apply all three trackers on the same
video sequences to track the same cell and compare to the stored
cell center positions. The video frames were recorded at a spa-
tial resolution of 320 240 pixels (where the pixel-to-micron
ratio is 3.11 pixels/micron in the horizontal direction and 3.10
pixels/micron in the vertical direction) and a temporal resolu-
tion of 30 frames per second. No preprocessing was performed
on the frames before tracking. We provide two types of error
measures for tracking.

1) Root mean square error(RMSE) of the tracked cell center
positions in microns. The RMSE is computed over all the
frames in a tracking video sequence. Manually determined
cell positions are used to compute the position error.

2) Percentage of frames tracked. If a computed cell center
is within one cell radius of the manually observed cell
center, then we consider that frame as “tracked.” The per-
centage is computed as the ratio of number of frames
tracked to the total number of frames in the sequence.

We have tracked two types of sequences: TNF-treated and
untreated sequences. The sequences with TNF-treated vessels
exhibit slower rolling (slower cell velocities). The untreated ves-
sels contain leukocytes rolling rapidly (up to 100m s) and are,
thus, more challenging to track. These sequences are 31 to 167
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Fig. 13. Comparison of the position RMSEs in tracking the treated vessel sequences with the three trackers.

Fig. 14. Comparison of the percentages of frames tracked in the treated sequences.

Fig. 15. Position RMSE in sequences obtained from untreated venules.

Fig. 16. Percentage of frames tracked in untreated sequences.

frames in duration at 30 frames per second. We set a maximum
number of frames based on the maximum cell velocity and the
available field of view. Our experience shows that typical rolling
leukocytes that are not adherent are visible for 1–3 s with a fixed
field of view of approximately 100 m in width. The values of
the weight parameters used in (1) for the experiments are set
as: , , , , , .
Fig. 13 shows the comparison of RMSE in all three methods
on 16 treated video sequences. RMSE values with snake tracker
are seen to be quite low compared to the RMSE with the other
two trackers. Fig. 14 shows the percentage of frames tracked
in the 16 treated vessel sequences. The snake tracker is seen to
have tracked 100% of the frames in all but one sequence where

the resulting percentage is 98.89%. Our current implementation
requires a maximum of 1 s per video frame in computational
expense using a 1.5-GHz, Pentium IV PC.

Figs. 15 and 16 show similar performance comparisons in the
untreated vessel sequences. Because of the rapid rolling of the
cells, the tracking task is more difficult in this case, and the dif-
ficulty is reflected in the performance of all three trackers. The
snake tracker significantly outperforms the other two trackers
– the average frames tracked for the snake tracker is over eight
standard deviations above the mean for the centroid tracker (in
terms of the standard deviation for the centroid tracker). For
the correlation tracker, the average frames tracked by the snake
tracker is almost three standard deviations above the correlation
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TABLE I
COMPARISON OFTRACKER PERFORMANCES INTERMS OFAVERAGE AND STANDARD DEVIATIONS OF THERMSES AND THE PERCENTAGES OFFRAMES TRACKED

tracker mean. In Table I we have listed the average and stan-
dard deviations of RMSE measures as well as the percentages
of frames tracked, separately for the treated and untreated video
sequences.

VIII. C ONCLUSION

This paper has introduced a shape and size constrained snake
model that has been successfully used in tracking leukocytesin
vivo. We have derived the evolution equations for the proposed
contour model from the very basic principles of calculus of
variations. An energy-based scheme has been proposed that
eliminates the need for resampling of the parametric snake
during evolution. The novelty in the proposed methods also lies
in the fact that all the derived shape constraint equations as well
as the resampling equations perfectly fit into the conventional
linear snake evolution equation. We have also enhanced the
tracking performance by modifying GGVF-PDEs with Dirichlet
boundary conditions. This modification has increased the
tracking capability in terms of reducing the frame rate or equiv-
alently increasing the velocity of leukocytes. Kalman filtering is
used to provide coasting of occluded leukocytes. Finally we have
compared the leukocyte tracking performance of the proposed
method with the performance of two standard methods and these
comparisons show the superiority of the proposed method in
terms of the number of frames tracked and the position error.
Our new method, therefore, will be useful for tracking rolling
leukocytesin vivo for drug validation, as well as for tracking
rolling leukocytes in flow chamber systems that are widely
used for screening for novel anti-inflammatory compounds.

APPENDIX

Here, we derive the Euler equations for the shape, size, and
position constraints from the basic principle of calculus of vari-
ations [14], [15]. In the derivation, we make use of the following
two results from integral calculus. They appear as a lemma and
as a corollary in [14] along with proofs.

Lemma 1 (du Bois–Reymond) [14]:If the function is con-
tinuous on [ ] and , for all functions

having continuous first derivative in [ ] with the boundary
conditions, , then is constant on [ ].

Corollary 1 [14]: If the function is continuous on [ ]
and , for all functions having continuous
first derivative in [ ] with the boundary conditions,

, then on [ ].

A. Euler Equations for the Shape Constraint

To obtain the first variation of the energy functional (2) we
follow the procedure of [15]. Thus, we consider a small neigh-
borhood ( ) of the contour ( ), where is vector of

terms where , and similarly, is vector con-
taining the terms, where , where .
By adding the neighborhood ( ) to the original contour
( ) we obtain a variation of the energy functional (2), and we
may think of it as a function of and ; see (22), as shown at
the bottom of the page. In finding the variation of (2) with re-
spect to the active contour ( ), the necessary conditions are

(23)

(22)
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Applying (23) to (22), we obtain

(24)

where the function is defined via

constant (25)

To obtain the Euler equations, we first prove that the sum of
second and third integrals in (24) is zero. Let us rewrite
as , where is
defined by or
equivalently by and

.
With this redefinition, the sum of the last two integrals of (24)

can be written as

So, (24) takes a simplified form

(26)

At this point, we are able to apply Lemma 1 to (26) if we let
and pro-

vided the function meets the prescribed conditions in the
Lemma 1. Equation (25) indeed suggests that is continuous
and WLOG: . Thus, we apply Lemma 1 to
find that is a constant, yielding
the first Euler equation in (4). The second equation in (4) is
found in a similar way.

B. Euler Equations for the Size Constraint

To obtain the Euler equation for (5) we proceed the same way
as we have done before for the shape constraint. Considering the
variation of the contour ( ) in a small neighborhood charac-
terized by ( ), we derive a new function of and as

(27)

Applying a similar strategy, the necessary conditions for ob-
taining Euler equations are

(28)

Now, applying (28) to (27), one finds that

(29)

From (29), we find that

(30)

where all terms in (30) are already defined in (3) and (25). Fi-
nally, imposing the conditions and , we obtain

(31)

Now, substituting (31) into (29), we obtain

(32)

At this point, by applying Lemma 1, we can obtain one Euler
equation. The other Euler equation is derived in a similar way
to complete (6).

C. Euler Equations for the Elliptic Shape Constraint

For the derivation of the Euler equations of (7), we form
the following new function taking into account the variation
of the contour ( ) in a small neighborhood characterized by
( ); see (33), as shown at the top of the next page. As be-
fore, the necessary conditions for the existence of extrema are
as follows:

(34)

Applying (34) on (33), we obtain the two Euler equations in (8).
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(33)

D. Euler Equations for the Position Constraint

Applying the same kind of variation on (9), we compute a
function of and as before

(35)

For an extremum, the necessary conditions are

(36)

Applying (36) on (35), we obtain

(37)

The application of Corollary 1 to (37) leads to the Euler equa-
tions in (10).
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