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2001.—To study the role of L-selectin in neutrophil (PMN)
margination and sequestration in the pulmonary microcircu-
lation, maximally active concentrations of C5a (900 pmol/g)
and N-formylmethionyl-leucyl-phenylalanine (fMLP; 0.34
pmol/g) were injected into the jugular vein of wild-type or
L-selectin-deficient C57BL/6 mice. In wild-type mice admin-
istered C5a or fMLP, 92 + 1% and 34 *= 9%, respectively, of
peripheral blood PMN were trapped mostly in the pulmonary
circulation as determined by immunohistochemistry and my-
eloperoxidase activity. In wild-type mice treated with F(ab’)s
fragments of the L-selectin monoclonal antibody MEL-14 or
in L-selectin-deficient mice, C5a-induced neutropenia was
not significantly reduced, but the decrease in peripheral
PMN in response to fMLP was completely abolished, indicat-
ing that L-selectin is necessary for fMLP- but not Cbha-
induced pulmonary margination. Immunostained lung sec-
tions of fMLP- or Cba-treated mice showed sequestered
neutrophils in alveolar capillaries with no evidence of neu-
trophil aggregates. We conclude that chemoattractant-in-
duced PMN margination in the pulmonary circulation can
occur by two separate mechanisms, one of which requires
L-selectin.

formyl peptides; complement; MEL-14; adhesion molecules

NEUTROPHILS PLAY A PRIMARY role in mediating many
types of acute lung injury, including the pathology seen
in patients with adult respiratory distress syndrome
(ARDS) (12). During this response, circulating neutro-
phils become marginated within the pulmonary circu-
lation and, along with the large marginated pool of
neutrophils present under physiological conditions, be-
come activated to mediate inflammation and subse-
quent endothelial and alveolar epithelial damage (20).
Although the causes of margination are well under-
stood for the peripheral circulation (42), the roles of
various adhesion molecules in the margination and
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subsequent sequestration of neutrophils within the
pulmonary circulation are unclear (10).

The size and complex geometry of pulmonary capil-
lary segments are likely responsible for the creation of
a large marginated pool of neutrophils within the lungs
(21). In animal models, >60% of pulmonary capillary
segments are more narrow than the diameters of rest-
ing neutrophils (9). While normal flow of erythrocytes
is maintained due to the geometry of the capillary beds,
neutrophil transit time is increased, and consequently,
neutrophils become 60-65-fold more concentrated in
the lung vasculature than in the peripheral circulation
(8, 16, 22). This marginated pool comprises 40% of total
body neutrophils in mice (38), with neutrophils in the
pulmonary circulation outnumbering those in the pe-
ripheral circulation by two- or threefold (8). The ma-
jority of these cells are found within capillaries (36),
although rolling neutrophils have occasionally been
seen in venules (32).

Further margination of circulating neutrophils fol-
lowed by a variable period of sequestration, mimicking
the pathophysiological reaction seen in ARDS, can be
elicited experimentally by a variety of techniques, in-
cluding intravenous injection of Cba (4, 23), lipopoly-
saccharide (LPS) (17), leukotriene B4 (46), or interleu-
kin-6 (IL-6) (45); tracheal or distal airway instillation
of bacteria (11), bacterial components (5), or defensins
(52); and induction of ischemia followed by reperfusion
in lung tissue (41). Although reduced neutrophil de-
formability on activation can cause sequestration (6,
25, 51), some components of this sequestration depend
on adhesion molecules such as Bs integrins (6, 10),
L-selectin (13, 16), and a4 integrins (5).

Cba binds a heptahelical receptor on neutrophils
that signals through pertussis toxin-sensitive G pro-
tein pathways to change adhesion molecule expression,
increase production of reactive oxygen species, and
enhance phagocytosis (14). Via an ill-defined sequence
of events, intravenous injection of Ch5a causes acute
neutropenia primarily because of sequestration within
pulmonary capillaries (7). Initial margination is not
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dependent on L-selectin, P-selectin, or CD18 integrins,
but prolonged sequestration does require CD18 inte-
grins and L-selectin (6, 13, 30). N-formylmethionyl-
leucyl-phenylalanine (fMLP), a formyl peptide derived
from Escherichia coli, binds to formyl peptide receptors
and also induces signaling events through pertussis
toxin-sensitive pathways that activate neutrophils,
change adhesion molecule expression, and prime the
cell for superoxide production and degranulation (14).
In vitro studies (43) have shown that fMLP can induce
neutrophil aggregation. fMLP has also been shown (26)
to induce pulmonary sequestration of circulating neu-
trophils, but adhesion molecule involvement in this
process has not been studied.

L-selectin is a member of the selectin family of cell
surface glycoproteins expressed on the tips of micro-
processes on neutrophils (39), where it mediates cell
capture under physiological flow conditions and high
velocity rolling on microvascular endothelium (27, 35).
L-selectin induces homotypic aggregation of neutro-
phils (43) and neutrophil-neutrophil interactions un-
der flow (2) by binding to P-selectin glycoprotein
ligand-1 (47) and other unidentified ligands on neutro-
phils (40). L-selectin is cleaved and shed from the
plasma membrane by a metalloproteinase (15) in a
process induced by activating agents, including fMLP
and Cba (28), or by cross-linking of CD18 inte-
grins (48).

Here we test the hypothesis that L-selectin is re-
quired for fMLP-induced neutrophil margination in the
lung. We compare the magnitude of C5a- and fMLP-
induced lung-specific sequestration responses in wild-
type C57BL/6 mice to that seen in mice with absent or
blocked L-selectin by evaluating peripheral blood neu-
trophil concentrations, marginated neutrophils in lung
sections, and the amount of myeloperoxidase activity
within harvested lungs. We present evidence that L-
selectin is not necessary for the initial margination
events in response to C5a, but that it is required for all
aspects of fMLP-induced margination and sequestra-
tion in the lung.

MATERIALS AND METHODS

Animals and reagent preparation. L-selectin-deficient
(L—/-) (1) and wild-type mice (both on C57BL/6 background)
were obtained from established colonies at the University of
Virginia Health Sciences Center vivarium, Hilltop Lab Ani-
mals, and Jackson Labs. All animal experiments were ap-
proved by the institutional committee for animal use. This
work fully conforms with the “Guiding Principles for Re-
search Involving Animals and Human Beings.” All experi-
ments were performed on mice at least 8 wk of age. fMLP
(ICN Biomedicals, Aurora, OH) was injected at a dose of 0.34
pmol/g body wt (low dose) because this dose has been shown
to produce complete neutropenia in rabbits (34). A higher
fMLP dose of 34 pmol/g body wt was used to examine
whether the neutrophil margination response was maximal
at the low dose. Human recombinant C5a complement frag-
ment (Sigma Chemical, St. Louis, MO) was injected at a dose
of 900 pmol/g body wt (high dose), which leads to an initial
intravascular C5a concentration of ~12 nM. This concentra-
tion has been shown (24, 37) in vitro to produce maximal

L-SELECTIN-DEPENDENT PMN MARGINATION IN LUNG

responses to Cha. A C5a dose of 90 pmol/g body wt (low dose)
was used to produce a margination response similar in mag-
nitude to that produced by fMLP. The monoclonal antibody
MEL-14 (rat IgG2a, 30 pg/mouse), which blocks all known
functions of L-selectin (34, 16), was purified from hybridoma
supernatant (American Type Culture Collection, Manassas,
VA). F(ab')s fragments of Mel-14 (30 pg/mouse) were pre-
pared by pepsin digestion (Pierce Chemical, Rockford, IL).
Optimal digestion (determined by SDS-PAGE) occurred at a
reaction time of 5 h in a 37°C shaking water bath (280 rpm in
a Brinkmann Orbimix 1010/incubator 1000). F(ab'). frag-
ments were purified (confirmed by SDS-PAGE) from undi-
gested Ab and Fc fragments by passage over a protein A
AffinityPak column (Pierce Chemical).

Neutropenia time course experiments. Wild-type C57BL/6
and L—/— mice were anesthetized (ip) with ketamine hydro-
chloride (125 mg/kg; Abbott Laboratories; North Chicago,
IL), xylazine (12.5 mg/kg; Vedcom, St. Joseph, MO), and
atropine sulfate (0.25 mg/kg; American Pharmaceutical Part-
ners, Los Angeles, CA). The trachea was intubated (PE-90
tubing, Becton Dickinson, Sparks, MD), and the right jugular
vein and right carotid artery were cannulated (PE-10 tubing,
Becton Dickinson). Anesthesia, hydration, and temperature
were maintained through jugular vein injection of anesthet-
ics and saline and the use of a heating pad (37°C) (Physitemp
Instruments, Clifton, NJ). Mice were stabilized for 15 min
before injection (iv) of 50 pl saline containing high- or low-
dose C5a, high- or low-dose fMLP, or 50 pnl PBS (control). In
some experiments, mice were pretreated with either intact
MEL-14 antibody or MEL-14 F(ab’)e fragments (30 g/
mouse) 30 min before injection of fMLP, C5a, or PBS. For
wild-type mice with no pretreatment, 28 mice were used for
high- (n = 2) or low-dose C5a (n = 5), high- (n = 5) or
low-dose fMLP (n = 12), or PBS control (n = 4). For L—/—
mice, 24 mice were used for high- (n = 5) or low-dose Cha (n =
5) or high- (n = 6) or low-dose fMLP (n = 8). For wild-type
mice pretreated with 30 ng MEL-14 F(ab’), fragments, 13
mice were used for high- (n = 4) or low-dose C5a (n = 3) or
high- (n = 3) or low-dose fMLP (n = 3). Blood samples were
collected before and at 1, 2, 3, 4, 5, 10, and 30 min after
mediator injection by filling one capillary tube (Drummond
Scientific, Broomall, PA) with carotid catheter dead space (10
wl) and then filling a second 10 pl tube with carotid blood.
This method produced reliable leukocyte counts and differ-
entials (data not shown). Each sample was stained with 90 pl
Kimura [0.05% (wt/vol) toluidine blue; 0.9% NaCl in 22%
ethanol (11 ml); 0.03% light-green SF yellowish (0.8 ml);
saturated saponin in 50% ethanol (0.5 ml); and 0.07 M
phosphate buffer, pH 6.4 (5 ml); all reagents Sigma Chemi-
cal], and neutrophil and mononuclear cell concentrations
were determined using a hemocytometer (Reichert, Buf-
falo, NY).

Myeloperoxidase assay. At 1 min postinjection of high- (n =
6) or low-dose C5a (n = 4), high- (n = 4) or low-dose fMLP
(n = 6), or 50 pl PBS (n = 5), the thoracic cavity of wild-type
C57BL/6 mice was opened, and the great vessels were oc-
cluded, stopping blood flow and respiratory effort by 2 min.
The lungs and spleens were removed, separated from connec-
tive tissue, and kept at —80°C in saline. Neutrophil infiltra-
tion into lungs was quantified by measuring myeloperoxidase
activity as described previously (44). Organs were homoge-
nized in 1:20 (wt/vol) cold (4°C) 20 mM phosphate buffer (pH
7.4) (Thomas Scientific, Swedesboro, NJ). Samples (1.5 ml)
were washed twice (17,000 g at 4°C for 30 min) and resus-
pended 1:5 (original organ wt/buffer vol) in 50 mM phosphate
buffer (pH 6.0) with 0.5% (wt/vol) hexadecyltrimethylammo-
nium bromide and 10 mM EDTA. Samples were sonicated,
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placed in liquid nitrogen for 1 min, and then thawed at 37°C.
This freeze-thaw procedure was repeated twice and followed
by incubation at 4°C for 20 min. After centrifugation (17,000
g at 4°C for 15 min), myeloperoxidase activity was measured
in triplicate by adding myeloperoxidase assay buffer (50 mM
KPO4, pH 6.0, 0.2 mg/ml o-dianisidine, and 0.06% H20>) at a
ratio of 4:1 to supernatant. The activity (1 U defined as
change in absorbance of 1/min) was calculated from the
linear slope of the absorbance vs. time plot (460 nm at 25°C
for 5 min; Lab Systems, Needham Heights, MA). The assay
was normalized by dividing myeloperoxidase activity by total
protein absorbance (A) as determined by bicinchoninic acid
assay (Pierce Chemical).

Immunohistochemistry. The lungs from animals treated
with high-dose C5a, low-dose fMLP, and PBS were inflated in
situ with 10% formalin, at 25 cmH30O. The lungs were sub-
sequently removed and fixed in 10% formalin for 48 h. Par-
affin-embedded sections (10 um) were stained with rat anti-
mouse neutrophil antibody (19) from Serotec (Raleigh, NC),
using a protocol similar to that described by Bishop et al. (3).
Briefly, sections were incubated [avidin, 10% rabbit serum
(NRS; Vector Laboratories, Burlingame, CA), and 0.5% fish
skin gelatin oil (FSGO) in PBS] for 1 h in a humidified
chamber at 25°C to block nonspecific binding, washed in
PBS, and then incubated in a humidified chamber at 4°C
overnight with 1 pg/ml rat anti-mouse neutrophil antibody
(0.5% FSGO, biotin, and 5% NRS in PBS). Sections were
washed and then incubated with 5 pg/ml biotinylated rabbit
anti-rat IgG (Vector Laboratories) (0.5% FSGO and 5% NRS
in PBS) for 1 h at room temperature in a humidified chamber.
After washing, sections were incubated for 30 min with
avidin-biotin-peroxidase complexes (Vectastain Elite ABC
kit, Vector Laboratories), washed with plain PBS, incubated
for 5 min with diaminobenzidine (DAB kit, Vector Laborato-
ries), and counterstained with hematoxylin and blueing so-
lution (Stephens Scientific, Kalamazoo, MI). Slides were
viewed using an Axiovert 100 microscope (Carl Zeiss, Thorn-
wood, NY), and pictures were generated using an MDS 100
camera (Kodak, Rochester, NY).

Statistical analysis. Statistical analysis of systemic leuko-
cyte concentrations and myeloperoxidase activity was per-
formed using unpaired Student’s ¢-test or for multiple com-
parisons, one-way pair-wise ANOVA, followed by Mann-
Whitney rank sum tests (SigmaStat software). Tests were
performed for differences between the treatment group and
control, unless otherwise indicated. Statistical significance
was set at P < 0.05.

RESULTS

General observations. All mice evaluated in this
study were healthy and of normal weight. Mouse
weights and baseline peripheral blood neutrophil and
mononuclear cell concentrations were not significantly
different among antibody pretreatment or mediator
treatment groups in circulating neutrophil studies,
and they also did not vary among treatment groups in
myeloperoxidase studies (data not shown). Carotid
blood sampling resulted in the removal of 160 pl of
blood. This volume was compensated for by addition of
saline into the jugular vein catheter, resulting in a
slight hemodilution (~6%).

C5a and fMLP decrease circulating neutrophils. Be-
cause complement fragments have been shown to pro-
duce margination of peripheral blood neutrophils
within the microvasculature of many organs, but par-
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ticularly within pulmonary capillaries (6, 7), the neu-
tropenia produced by intravenous administration of
Cb5a or fMLP was considered to be a measure of neu-
trophil margination. Peak margination after injection
with both mediators and doses occurred at 1 min,
followed by a mediator- and dose-specific sequestration
period. At 1 min postinjection of 900 pmol C5a/g body
wt (high dose), the peripheral blood neutrophil concen-
tration fell to 8 + 0.7% of baseline (Fig. 1A), consistent
with the neutropenic effect of complement fragments
from zymosan-activated plasma used in other studies
(4,17, 23, 26). High-dose Cha also induced a significant
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Fig. 1. A: peripheral blood neutrophil counts for wild-type C57BL/6
mice at 1 min after intravenous injection of PBS, high- (900 pmol/g
body wt) or low-dose C5a (90 pmol/g body wt), or high- (34 pmol/g
body wt) or low-dose N-formylmethionyl-leucyl-phenylalanine
(fMLP; 0.34 pmol/g body wt). Values are %baseline counts = SE.
*P < 0.05, neutrophil count significantly decreased vs. baseline or
PBS control. B: correlation between blood neutrophil counts (%base-
line at 2 min) and lung neutrophils as measured by myeloperoxidase
(MPO) at 2 min after PBS, high- or low-dose C5a, or high- or low-dose
fMLP injection in wild-type C57BL/6 mice. MPO activity is expressed
as MPO activity (in U; see Myeloperoxidase activity) normalized to
total lung protein absorbance (A). +P < 0.05, MPO activity signifi-
cantly increased compared with PBS control; #P < 0.05, peripheral
blood neutrophil concentration significantly decreased compared
with PBS control.
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margination (563 = 2% of baseline) of mononuclear cells
out of the peripheral circulation, whereas neither low-
dose Cha nor fMLP induced a drop in mononuclear
cells (data not shown). fMLP at 0.34 pmol/g body wt
(low dose) induced a smaller but significant percent
drop in peripheral blood neutrophils to 66 * 9% of
baseline. A 100-fold increase in the dose of fMLP in-
duced no further decrease in neutrophil counts (65 =
12% of baseline), indicating that the maximal margin-
ation response induced by fMLP is smaller than that
induced by C5a. An injection of one-tenth of the origi-
nal dose of C5a (90 pmol/g body wt) produced neutro-
penia (57 = 9% of baseline) that approximated the
response induced by fMLP. Peripheral blood neutro-
phil concentrations after low- and high-dose Cb5a re-
mained decreased relative to control until 4 and 30 min
after injection, respectively (see Fig. 4; other data not
shown). In contrast, neutrophil sequestration after
fMLP injection was short, with the response to low-
dose fMLP terminated by 3 min, and the response to
high-dose fMLP terminated by 2 min (see Fig. 4).

Neutropenia correlates with lung neutrophil margin-
ation. To verify that the neutropenia produced by C5a
and fMLP is primarily due to margination within the
pulmonary circulation, we compared the magnitude of
the neutropenic effect at 2 min postinjection of media-
tor with lung neutrophil content as measured by my-
eloperoxidase activity (in U; see Myeloperoxidase activ-
ity) normalized to total lung protein absorbance (A)
(Fig. 1B). Mice treated with high-dose C5a (0.52 = 0.06
U/A), low-dose C5a (0.55 = 0.08 U/A), or low-dose fMLP
(0.52 £ 0.06 U/A) showed a 50% increase in the number
of neutrophils in the lungs compared with PBS-treated
control mice (0.36 = 0.03 U/A). Given that previous
morphometric and autoradiographic studies (6, 8) in
other animal models have estimated that the normal
resting pool of neutrophils in the lungs is at least two
times the size of the pool in the peripheral circulation,
this observed increase in myeloperoxidase activity is
consistent with the lungs as the site of most neutrophil
margination in response to C5a or fMLP. In contrast,
myeloperoxidase activity in spleens from Cba- or
fMLP-treated mice was not significantly increased rel-
ative to activity in spleens from PBS-treated controls
(data not shown).

Detection of marginated neutrophils in lung sections.
Immunohistochemistry was performed on sections of
fixed lungs inflated and harvested ~2 min after intra-
venous injection of high-dose C5a, low-dose fMLP, or
PBS (Fig. 2). More neutrophils were found in the pul-
monary capillaries and in the surrounding alveolar
tissue in the sections taken from Cha- (47 * 2 neutro-
phils/high-power field) and fMLP-treated animals
(43 = 1 neutrophils/high-power field) compared with
sections from PBS-treated (32 = 1 neutrophils/high-
power field) controls. The increases in neutrophil
counts for fMLP- and Cha-treated animals were con-
sistent with the increases in lung myeloperoxidase
activity. In addition, C5a-treated sections appeared to
have an increased number of neutrophils in pulmonary
arterioles and venules compared with fMLP- or PBS-
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Fig. 2. Neutrophils (red brown) in paraffin-embedded lung sections
from wild-type C57BL/6 mice, counterstained with hematoxylin and
blueing solution. Lungs were inflated with 10% formalin ~2 min
after intravenous injection of PBS (A), C5a (900 pmol/g body wt) (B),
or fMLP (0.34 pmol/g body wt) (C). Representative sections are
shown. There is no evidence for homotypic (neutrophil-neutrophil) or
heterotypic (neutrophil-platelet) aggregation. Objective, X40; nu-
merical aperture, 1.2.

treated animals. Most importantly, virtually all of the
marginated neutrophils in the microvasculature were
seen as single adherent cells spread along the endothe-
lium. We found no evidence for neutrophil aggregation,
one of the potential mechanisms we considered for
Cbha- or fMLP-induced lung margination.

L-selectin dependence of fMLP-induced margination.
We next examined neutropenia 1 min after C5a and
fMLP injection in L—/— mice and wild-type mice pre-
treated with MEL-14, an antibody that blocks all
known aspects of L-selectin function (Fig. 3). Periph-
eral neutrophil counts 30 min after injection of 30 ug
intact MEL-14 antibody were reduced to 34 *= 6%
(mean = SE) of baseline, possibly due to an Fc receptor
effect. Therefore, we produced F(ab’)e fragments of
MEL-14 for blocking studies, which did not cause sig-
nificant decreases of neutrophils after 30 min (99 + 7%
of baseline). The 30-pug dose of MEL-14 F(ab')s frag-
ments was demonstrated to saturate L-selectin bind-
ing sites on neutrophils by flow cytometry (data not
shown). The absence or blockade of L-selectin did not
significantly alter the initial margination of neutro-
phils in response to either high- or low-dose C5a. Pe-
ripheral blood neutrophil concentrations for L—/— and
MEL-14 F(ab’)s fragment-pretreated wild-type mice

AJP-Regulatory Integrative Comp Physiol « VOL 282 « APRIL 2002 « Www.ajpregu.org



L-SELECTIN-DEPENDENT PMN MARGINATION IN LUNG

140

owT
WL-selectin -/

120 {1 OWT + MEL-14 F(ab')2 Fragmenls

Neutrophil Count at 1 Minute
(% of Baseline)

Low C5a
Treatment Group

High C5a Low fMLP High fMLP

Fig. 3. Peripheral blood neutrophil counts (%baseline) at 1 min after
intravenous injection of high- (34 pmol/g body wt) or low-dose fMLP
(0.34 pmol/g body wt) or high- (900 pmol/g body wt) or low-dose C5a
(90 pmol/g body wt) into wild-type C57BL/6 mice (WT), L-selectin-
deficient mice (L-selectin—/—), or wild-type mice pretreated with
intravenous injection of 30 pg MEL-14 F(ab’)s fragments. Absence or
blockade of L-selectin has only a minimal effect on C5a-induced
neutropenia but blocks fMLP-induced margination completely. *P <
0.05, significantly increased over wild type; +P < 0.05, significantly
decreased compared with baseline.

were 22 = 8% and 21 = 5%, respectively, of baseline at
1 min for mice treated with high-dose C5a and 72 *= 7%
and 79 * 8%, respectively, for those treated with low-
dose Cha. In contrast, the absence or blockade of L-
selectin completely abolished neutrophil margination 1
min after injection of either fMLP dose.

Duration of response with and without L-selectin.
The time courses of changes in peripheral blood neu-
trophil concentrations in L—/— and L-selectin anti-
body-pretreated wild-type mice were measured out to 5
min after fMLP or C5a injection and compared with
similarly treated wild-type mice with no antibody pre-
treatment. There was no difference in the time course

>
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of neutropenia after high- or low-dose C5a injection for
mice with absent or blocked L-selectin vs. wild-type
(Fig. 4, A and B). The peripheral blood neutrophil count
after low-dose fMLP treatment in L—/— and antibody-
pretreated mice was significantly higher than for wild-
type mice until 3 min postinjection and did not signif-
icantly fall below baseline for at least 30 min after
injection (Fig. 4C; other data not shown). Counts in
high-dose fMLP-treated L—/— or antibody-pretreated
mice also did not fall below baseline (Fig. 4D).

DISCUSSION

Previous studies looking at the role of adhesion mol-
ecules in the pulmonary margination of neutrophils
have focused on the complement fragment- and LPS-
induced pathways (13, 30, 31). Complement activation
leads to margination within the pulmonary capillaries
of mice that is initially adhesion molecule independent
(30), whereas E. coli-derived LPS induces a mechanis-
tically distinct margination event in rabbits that is
entirely dependent on L-selectin (31). Interestingly,
instillation of E. coli, but not Streptococcus pneu-
moniae, into distal airways of mice induces an accumu-
lation of neutrophils within capillaries that is also
L-selectin dependent (13). Our finding that margin-
ation in response to fMLP is L-selectin dependent sug-
gests that E. coli-derived formyl peptides, in addition
to LPS, may cause this accumulation of neutrophils in
response to E. coli instillation.

High- and low-dose fMLP induced approximately the
same percentage of neutrophils to disappear from the
circulating pool at 1 min, indicating that this shift is
the maximal response that can be elicited by a single
bolus of fMLP. Issekutz and Ripley (26) induced nearly
complete neutropenia with fMLP; however, this study
was done in a pig model, and the animals were subject
to continuous infusion of fMLP over a 10-min period.
Given that at least twice as many neutrophils are

Fig. 4. Peripheral blood neutrophil counts
(%baseline) at specified times after low- (90
pmol/g body wt; A) or high-dose C5a (900
pmol/g body wt; B) or low- (0.34 pmol/g body
wt; C) or high-dose fMLP (34 pmol/g body wt;

4 5 D) injection in wild-type C57BL/6 mice (m),
L-selectin —/— mice (a), and wild-type mice
pretreated with 30 pg Mel-14 Fab(2) frag-
ments (@). Absence or blockade of L-selectin
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marginated in the lungs than in the peripheral circu-
lation under normal conditions (8), our observed in-
crease in lung myeloperoxidase activity of 50% com-
pared with PBS control for C5a or low-dose fMLP
accounts for virtually all of the neutrophils that disap-
peared from the peripheral circulation. High-dose C5a
seems to induce margination into organs other than
the lung as well, because myeloperoxidase activity in
the lung is equal in C5a- and fMLP-treated animals,
despite the much larger neutropenia induced by C5a.

Neutropenia produced by fMLP in pigs is accompa-
nied by thrombocytopenia (26). Neutrophil-platelet ag-
gregation occurs in vitro (29), and fMLP can produce
L-selectin-dependent homotypic human neutrophil ag-
gregates in vitro (43). Therefore, we looked for neutro-
phil-platelet or neutrophil-neutrophil aggregates.
However, the vast majority of neutrophils within cap-
illaries were single cells, adherent and spread out
along the endothelium, and we saw no evidence of
aggregation. These findings do not preclude leukocyte-
leukocyte interactions, because they may not be readily
detectable by immunohistochemistry. Secondary teth-
ering has previously been reported (2) to play a role in
fMLP-induced margination. Although this type of in-
teraction contributes little to leukocyte accumulation
in the peripheral circulation (33), vascular parameters
in the pulmonary circulation are vastly different (9,
21), and the L-selectin dependence of both secondary
tethering and fMLP-induced sequestration within the
pulmonary circulation makes this potential mecha-
nism worth investigating.

The lung sections also showed that most of the neu-
trophils from C5a- or fMLP-treated animals were mar-
ginated within capillaries, similar to the findings by
Doyle et al. (13) for C5a-induced margination. There-
fore, both L-selectin-dependent and L-selectin-inde-
pendent mechanisms of neutrophil margination exist
in lung capillaries and are differentially used depend-
ing on the chemoattractant activator present. Both
Cba and fMLP activate neutrophils through G protein-
coupled receptors and Gaj-mediated pathways (14).
Given the different physiological responses demon-
strated here, it should be interesting to identify differ-
ences in signaling pathways and downstream effector
systems that might account for the differential require-
ments for L-selectin. The discovery that fMLP-induced
margination is entirely L-selectin dependent repre-
sents the first evidence of a chemoattractant response
of this type. Previous reports on L-selectin-dependent
margination in response to LPS are different, because
LPS acts through another set of receptors, specifically
Toll-like receptor-2 (TLR-2) and TLR-4 (49).

Cbha receptors from different species bind C5a with
similar [dissociation constant (Ky), ~1 nM] affinity
(50). fMLP is a low-affinity agonist for murine formyl
peptide receptors (K4, ~100 nM), whereas human and
rabbit formyl peptide receptors bind fMLP with much
higher (K4, ~1 nM) affinity (18). The low dose of fMLP
used in this study induces complete neutropenia in
rabbits (34), as opposed to the 35% decrease in periph-
eral neutrophils in mice that we report here. Although
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affinity differences may play a role in this species-
dependent neutrophil responsiveness, increasing the
dose of fMLP 100-fold did not increase the total amount
of neutrophil margination in the pulmonary circula-
tion. If affinity differences were solely responsible for
the species-specific margination responses, this higher
dose would produce an amount of neutropenia similar
to that seen in rabbits. Therefore, our results suggest
that the biological response to fMLP receptor stimula-
tion may be limited in mice and may cause the ob-
served species differences in neutrophil margination in
the lungs.

In conclusion, we have shown that injection of both
Cha and fMLP into the jugular vein of wild-type
C57B16 mice induced significant decreases in periph-
eral neutrophil concentrations. Through myeloperoxi-
dase activity assay and immunohistochemistry, we
show that most neutrophils were trapped within cap-
illaries in the pulmonary circulation. Blocking or elim-
inating L-selectin had no significant effect on Cbha-
induced decreases in peripheral neutrophils, but
fMLP-induced margination was completely blocked,
indicating that L-selectin is necessary for fMLP-in-
duced, but not C5a-induced, neutrophil sequestration
in the lung microcirculation. We conclude that to be-
come marginated in the lungs neutrophils use at least
two separate mediator-dependent mechanisms, one of
which requires L-selectin.
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